编辑:sx_yanxf
2016-09-05
对于老师制作好的教学计划,有利于新课的讲授,精品学习网为大家编辑了苏教版高二数学抽样方法教学计划范文,希望对大家有所帮助。
1.1抽样方法 (第一课时)
教学目标:了解简单随机抽样与分层抽样的概念,要求会用简单随机抽样和分层抽样这两种常用的抽样方法从总体中抽取样本。
教学重点:会用简单随机抽样和分层抽样两种方法从总体中抽取样本
教学难点:会用简单随机抽样和分层抽样两种方法从总体中抽取样本
教学过程:
一、复习:
1.在统计里,我们把______________叫总体,其中的____________叫个体,从总体中_______________________叫一个样本,样本中_________叫做样本容量。
2.从5万多名考生中随机抽取500名学生的成绩,用他们的平均成绩去估计所有考生的平均成绩,指出:_______是总体,___________是个体,__________________是总体的一个样本,样本容量是______。
3.我们在初中学习过一些统计知识,了解统计的基本思想方法是用样本估计总体,即通过不是直接去研究总体,而是通过从总体中抽取一个样本,根据样本的情况去估计总体的相应情况,例如,我们通常用样本平均去估计总体平均数,这样,样本的抽取是否得当,对于研究总体来说十分关键。
那么,怎样从总体中抽取样本呢?怎样使所抽取的样本能更充分地反映总体的情况呢?下面我们介绍两种常用的抽样方法:简单随机抽样和分层抽样。
二、新课讲授:
1.简单随机抽样:
假定一个小组有6个学生,要通过逐个抽取的方法从中取3个学生参加一项活动,第1次抽取时每个被抽到的概率是___,第2次抽取时,余下的每个被抽到的概率都是__,第3次抽取时,余下的每个被抽到的概率都是__。
每次抽取时各个个体被抽到的概率是相等的,那么在整个抽样过程中每个个体被抽到的概率是否确实相等?
例如,从含有6个体的总体中抽取一个容量为2的样本,在整个抽样过程中,总体中的任意一个个体
,在第一次抽取时,它被抽到的概率是__;若它第1次未被抽到而第2次被抽到的概率是____,由于个体
第1次被抽到与第2次被抽到是___(填互斥,独立)事件,根据___事件的概率__公式,在整个抽样过程中,个体
被抽到的概率p=_______。又由于个体
的任意性,说明在抽样过程中每个体被抽到的概率相等,都是__。
一般地,设一个总体的个体总数为n,如果通过逐个抽取的方法从中抽取样本,且每次抽取时各个个体被抽到的概率相等,就称这样的抽样为简单随机抽样。
事实上:用简单随机抽样的方法从个体数为n的总体中逐次抽取一个容量为
的样本,那么每次抽取时各个个体被抽到的概率相等,依次是
,且在整个抽样过程中每个个体被抽到概率都等于
。
由于简单随机抽样体现了抽样的客观性和公平性,且这种抽样方法比较简单,所以成为一种基本的抽样方法。如何实施简单抽样呢?下面介绍两种常用方法
(1)抽签法
先将总体中的所有个体编号(号码可以从1到n),并把号码写在形状、大小相同的号签上,号签可以用小球、卡片、纸条等制作,然后将这些号签放在同一个箱子里,进行均匀搅拌,抽签时,每次从中抽出1个号签,连续抽取
次,就得到一个容量为
的样本,对个体编号时,也可以利用已有的编号,例如从全班学生中抽取样本时,可以利用学生的学号、座位号等。
抽签法简便易行,当总体的个体数不多时,适宜采用这种方法。
(2)随机数表法
下面举例说明如何用随机数表来抽取样本。
为了检验某种产品的质量,决定从40件产品中抽取10件进行检查,在利用随机数表抽取这个样本时,可以按下面的步骤进行:
第一步,先将40件产品编号,可以编为00,01,02,
,38,39。
标签:高二数学教学计划
精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。