编辑:
2014-07-08
教学策略:
类比着二次函数,对于底数的范围的取值,引导学生回顾指数幂中当指数为全体实数时,底数怎样取值才能一直有意义,以问题的形式引发学生思考底数能否取负数、正数、0、1?从而得到底数的范围。
学生对: 1)y=-3x 2)y=31/x 3) y=31+x
4) y=(-3)x 5) y=3-x=(1/3) x
几种形式的函数的判断,加强对指数函数形解析式的理解和辨别:
问题2.
学生初中阶段就接触过函数,但对于学生而言,指数函数是完全陌生的函数。学生列表时,数值的选取上可能会少取或是数值的选取不能照顾到全体实数,画图时,又容易受以前学过的函数图像的影响,把指数函数的图像画成已经学过的图像的形象。
教学策略:在列表格时自变量的取值以及如何画出指数函数的图像的问题上,采用启发式教学法,类比学过的函数图形的画法,引导学生画图,画完图后,又利用实物投影仪展示一位同学的图像,由全班同学进行提出意见纠错来补充画图的不足。
另外为了让学生增强识图、用图的能力可以让学生根据观察到的指数函数的图像,来画出底数不同取值范围内的的草图,以便于探究性质。
问题3.
函数定义给出后,底数a如何分类讨论的情况学生难以做到,如果处理不好,这对于指数函数质探究时的分类讨论有很重要的意义。
教学策略:在定义中对于底数的取值范围的讨论后,得出了底数a>0且a≠1。此时,在数轴上把a的范围表示出来,这样学生很容易从数轴上的区间图看出底数分为两类情况进行讨论。这样为指数函数质探究时的分类讨论埋下了伏笔。
问题4 .
通过两个具体的特殊的指数函数图像,来探究得出指数函数的性质。如何使学生能经历从特殊到一般的过程,这种由特殊到一般再到特殊的思想的领会,如何完成?
教学策略:教师利用几何画板分别画出了底数大于1的和底数在0到1之间的若干个不同的指数函数的图像,展现不同的底数的变化时图像的不同情况,从而让学生经历由特殊到一般的过程。
问题5.
指数函数是学生在学习了函数基本概念和性质以后接触到得第一个具体函数,学生可能找不到研究问题的方法和方向.
教学策略:在这部分的安排上,我更注意学生思维习惯的养成,即应从哪些方面,哪些角度去探索一个具体函数。
问题6.
学生得到的性质特点可能是杂乱的,如何梳理突出主要的性质?
教学策略:在学生识图、用图、合作探究的过程后,利用两个表格的填写,让学生感受由图象特征来得到函数的性质的过程。表格主要呈现五个方面的性质与特点。
五、教法分析:
为充分贯彻新课程理念,使教学过程真正成为学生学习过程,让学生体验数学发现和创造的历程,本节课拟采用直观教学法、启发发现法、课堂讨论法等教学方法。以多媒体演示为载体,启发学生观察思考,分析讨论为主,教师适当引导点拨,以动手操作、合作交流,自主探究的方式来让学生始终处在教学活动的中心。
六、预期效果分析:
1、教学环节环环相扣,层层深入,并充分体现教师与学生的交流互动,在教师的整体调控下,学生通过动手操作,动眼观察,动脑思考,亲身经历了知识的生成和发展过程,使学生对知识的理解逐步深入。
2、简单实例的引入,顺利完成了知识的迁移,从得出指数函数的模型,符合学生认知规律的最近发展区。
3、 而作业中完成指数函数性质的探究报告,弥补课堂时间有限探究和展示的局限性,带领学生进入对指数函数更进一步的思考和研究之中,从而达到知识在课堂以外的延伸。
4、在整个教学过程中,由于学生是自觉主动地发现结果,对所学知识应该能够较快接受。因此,我认为可以达到预定的教学目标。
精品学习网高中频道为大家整理了2014年高中高一数学说课稿《指数函数及其性质》
标签:高一数学说课稿
精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。