您当前所在位置:首页 > 高中 > 说课稿 > 高二数学说课稿

高二上册数学说课稿怎么写:中国古代数学中的算法案例

编辑:

2016-09-02

通过对以往所学数学知识的回顾,使学生理清知识脉络,并且向学生指明,我国古代数学的发展“寓理于算”,不同于西方数学,在今天看仍然有很大的优越性,体会中国古代数学对世界数学发展的贡献,增强爱国主义情怀。

阅读

课本

探究

新知

1. 求两个正整数最大公约数的算法

学生通常会用辗转相除法求两个正整数的最大公约数:

例1:求78和36的最大公约数

(1) 利用辗转相除法

步骤:

计算出78 36的余数6,再将前面的除数36作为新的被除数,36 6=6,余数为0,则此时的除数即为78和36的最大公约数。

理论依据:  ,得 与 有相同的公约数

(2) 更相减损之术

指导阅读课本P ----P ,总结步骤

步骤:

以两数中较大的数减去较小的数,即78-36=42;以差数42和较小的数36构成新的一对数,对这一对数再用大数减去小数,即42-36=6,再以差数6和较小的数36构成新的一对数,对这一对数再用大数减去小数,即36-6=30,继续这一过程,直到产生一对相等的数,这个数就是最大公约数

即,

理论依据:

由 ,得 与 有相同的公约数

算法:

输入两个正数 ;

如果 ,则执行 ,否则转到 ;

将 的值赋予 ;

若 ,则把 赋予 ,把 赋予 ,否则把 赋予 ,重新执行 ;

输出最大公约数

程序:

a=input(“a=”)

b=input(“b=”)

while a<>b

if a>=b

a=a-b;

else

b=b-a

end

end

print(%io(2),a,b)

学生阅读课本内容,分析研究,独立的解决问题。

教师巡视,加强对学生的个别指导。

由学生回答求最大公约数的两种方法,简要说明其步骤,并能说出其理论依据。

由学生写出更相减损法和辗转相除法的算法,并编出简单程序。

教师将两种算法同时显示在屏幕上,以方便学生对比。

上文提供的高二上册数学说课稿怎么写,大家仔细阅读了吗?更多参考内容请关注精品学习网。

精品学习网官方公众平台--【精品高中生】正式上线啦,大家可扫描下方的二维码关注,也可搜索微信号“gk51edu”或者直接输入“精品高中生”进行关注!!我们每天会为大家推送最新的内容哦~

精品高中生

免责声明

精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。