编辑:sx_zhaodan
2014-05-30
人教版高中数学说课稿:函数的最大值和最小值
【摘要】人教版高中数学说课稿:函数的最大值和最小值是精品学习网为您整理的最新考试资讯,请您详细阅读!
【教材分析】
1.本节教材的地位与作用
本节主要研究闭区间上的连续函数最大值和最小值的求法和实际应用,分两课时,这里是第一课时,它是在学生已经会求某些函数的最值,并且已经掌握了性质:“如果f(x)是闭区间[a,b]上的连续函数,那么f(x)在闭区间[a,b]上有最大值和最小值” ,以及会求可导函数的极值之后进行学习的,学好这一节,学生将会求更多的函数的最值,运用本节知识可以解决科技、经济、社会中的一些如何使成本最低、产量最高、效益最大等实际问题.这节课集中体现了数形结合、理论联系实际等重要的数学思想方法,学好本节,对于进一步完善学生的知识结构,培养学生用数学的意识都具有极为重要的意义.
2.教学重点
会求闭区间上连续开区间上可导的函数的最值.
3.教学难点
高三年级学生虽然已经具有一定的知识基础,但由于对求函数极值还不熟练,特别是对优化解题过程依据的理解会有较大的困难,所以这节课的难点是理解确定函数最值的方法.
4.教学关键
本节课突破难点的关键是:理解方程f′(x)=0的解,包含有指定区间内全部可能的极值点.
【教学目标】
根据本节教材在高中数学知识体系中的地位和作用,结合学生已有的认知水平,制定本节如下的教学目标:
1.知识和技能目标
(1)理解函数的最值与极值的区别和联系.
(2)进一步明确闭区间[a,b]上的连续函数f(x),在[a,b]上必有最大、最小值.
(3)掌握用导数法求上述函数的最大值与最小值的方法和步骤.
2.过程和方法目标
(1)了解开区间内的连续函数或闭区间上的不连续函数不一定有最大、最小值.
(2)理解闭区间上的连续函数最值存在的可能位置:极值点处或区间端点处.
(3)会求闭区间上连续,开区间内可导的函数的最大、最小值.
标签:高三数学说课稿
精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。