您当前所在位置:首页 > 高中 > 说课稿 > 高三数学说课稿

高三年级数学说课稿《任意角的三角函数的定义》

编辑:

2015-11-12

【设计意图】

从学生现有知识水平和认知能力出发,创设问题情景,让学生产生认知冲突,进行必要的启发,将学生思维引上自主探索、合作交流的“再创造”征程。

教师对学生回答情况进行点评后布置任务情景:请同学们用直角坐标系重新研究锐角三角函数定义!

师生共做(学生口述,教师板书图形和比值)。

问题 4:对于确定的角 ,这三个比值是否与P在 的终边上的位置有关?为什么?

先让学生想象思考,作出主观判断,再引导学生观察右图,

联系相似三角形知识,探索发现: 对于锐角α的每一个确定值,

六个比值都是确定的,不会随P在终边上的移动而变化。

得出结论(强调):当α为锐角时,六个比值随α的变化而变化;但对于锐角α的每一个确定值,六个比值都是确定的,不会随P在终边上的移动而变化. 所以,六个比值分别是以角α为自变量、以比值为函数值的函数。

(二)推广认知——形成概念

将锐角的比值情形推广到任意角α后,水到渠成,师生共同进行探索和推广出:任意角的三角函数定义。同时教师强调:由于弧度制使角和实数建立了一一对应关系,所以三角函数是以实数为自变量的函数,对数学学习能力较好的同学起到了很好的指导作用。

教师指出: sinα、cosα、tanα的定义域必须紧扣三角函数定义在理解的基础上记熟,cotα、cscα、secα的定义域不要求记忆。

(关于值域,到后面再学习)。

【设计意图】定义域是函数三要素之一,研究函数必须明确定义域. 指导学生根据定义自主探索确定三角函数定义域,有利于在理解的基础上记住它、应用它,也增进对三角函数概念的掌握。

(三)巩固新知——探求规律

为了使学生达到对知识的深化理解,进而达到巩固提高的效果,

例1.已知角 的终边过点 ,求 的六个三角函数值

要求:读完题目,思考:计算什么?需要准备什么?闭目心算,对照板书,模仿书面表达格式。

巩固定义之后,我特地设计了一组即时训练题,以巩固和加深对三角函数概念的理解,通过课堂积极主动的练习活动,培养学生分析解决问题的能力。

例2. 求 的正弦、余弦和正切值。

分析: 终边上有无穷多个点,根据三角函数的定义,只要知道 终边上任意一个点的坐标,就可以计算这个角的三角函数值(或判断其无意义)

师生探索:紧扣三角函数定义求解,首先要在终边上取定一点。终边在哪儿呢?取定哪一点呢?任意点、还是特殊点?要灵活

,只要能够算出三角函数值,都可以。

取特殊点能使计算更简明。

等待学生基本理解和掌握三角函数定义后,观察、分析初、高中所计算的函数值有何变化,让学生意识到三角函数值的正负与角所在象限有关, 然后引导学生紧紧抓住三角函数定义来分析,从而导出三角函数值的正负与角所在象限的关系,进而由教师总结符号记忆方法,便于学生记忆。

【设计意图】判断三角函数值的正负符号,是本章教材的一项重要的知识、技能要求. 要引导学生抓住定义、数形结合判断和记忆三角函数值的正负符号,并总结出形象的“才”字符号法则,这也是理解和记忆的关键。

(四)总结反思——提高认识

由学生总结本节课所学习的主要内容:⑴任意角的三角函数的定义及其定义域;⑵三角函数的符号规律。让学生通过知识性内容的小结,把课堂教学传授的知识尽快化为学生的素质;通过数学思想方法的小结,使学生更深刻地理解数学思想方法在解题中的地位和应用,并且逐渐培养学生的良好的个性品质目标。

(五)任务后延——自主探究

学生经过以上四个环节的学习,已经初步掌握了任意角的三角函数的定义及三角函数的符号规律,有待进一步提高认知水平,因此我针对学生素质的差异设计了有层次的作业,其中思考题的设计思想是:综合练习巩固提高,更为下节的学习内容打下基础,同时留给学生课后自主探究,这样既使学生掌握基础知识,又使学有佘力的学生有所提高,从而达到拔尖和“减负”的目的,以有利于全体学生的发展。

精品小编为大家提供的高三年级数学说课稿,大家仔细阅读了吗?最后祝同学们学习进步。

相关推荐:

2015—2016学年高三数学优秀说课稿:曲线与方程

高三数学说课稿:《反函数》

免责声明

精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。