全国高中数学联赛试题精编

编辑:

2015-12-21

二、 填空题

7、如图,由余弦定理可得:∣Z1+Z2∣=√19, ∣Z1-Z2∣=√7,所以∣(Z1+Z2)/(Z1-Z2)∣=(√19)/(√7)=(√133)/7.

8、不难求出前三项系数分别是1,(1/2)n,(1/8)n(n-1),由于这三个数成等差数列,有2·1/2n=1+1/8n(n-1).解得:n=8和n=1(舍去).

当n=8时,Tr+1=Cr8(1/2)rx(16-3r)/4,这里r=0,1,…,8.r应满足4∣(16-3r),所以r只能是0,4,8.

9、首先,在每个侧面上除P1点外尚有五个点,其中任意三点组添加点P1后组成的四点组都在同一个平面,这样的三点组有C35个,三个侧面共有3C35个.

其次,含P1的每条棱上的三点组添加底面与它异面的那条棱上的中点组成的四点组也在一个平面上,这样的四点组有3个。

综上,共有C35+3=33个.

10、由g(x)=f(x)+1-x得:f(x)=g(x)+x-1,所以

g(x+5)+(x+5)-1≥g(x)+(x-1)+5, g(x+1)+(x+1)-1≤g(x)+(x-1)+1.

即g(x+5)≥g(x),g(x+1)≤g(x).∴g(x)≤g(x+5)≤g(x+4)≤g(x+3)≤g(x+2)≤g(x+1)≤g(x).∴g(x+1)=g(x).

即g(x)是周期为1的周期函数,又g(1)=1,故g(2002)=1.

11、

由对称性只考虑y≥0,因为x>0,所以只须求x-y的最小值.

令x-y=u代入x2-4y2=4,有3y2-2uy+(4-u2)=0.这个关于y的二次方程显然有实根,故Δ=16(u2-3)≥0,∴u≥√3.当x=(4/3)√3,y=(√3)/3时,u=√3.故∣x∣-∣y∣的最小值为√3.

12、原不等式可化为:

(cosx-((a-1)/2))2≤a2+(a-1)2/4.

∵-1≤cosx≤1,a<0,a-1/2<0,

∴当cosx=1时,函数y=(cosx-(a-1)/2)2有最大值(1-(a-1)/2)2,从而有(1-(a-1)/2)2≤a2+(a-1)2/4,整理得a2+a-2≥0,∴a≥1或a≤-2.又a<0,∴a≤-2.

三、 解答题

13、设B点坐标为(y21-4,y1),C点坐标为(y2-4,y)

显然y21-4≠0,故kAB=(y1-2)/(y21-4)=1/(y1+2).由于AB⊥BC,所以kBC=-(y1+2).从而y-y1=-(y1+2)[x-(y21-4)],y2=x+4消去x,注意到y≠y1得:(2+y1)(y+y1)+1=0→y21+(2+y)y1+(2y+1)=0.由Δ≥0解得:y≤0或y≥4.

当y=0时,点B的坐标为(-3,-1);当y=4时,点B的坐标为(5,-3),均满足题意。故点C的纵坐标的取值范围是y≤0或y≥4.

14、(1)对P0进行操作,容易看出P0的每条边变成P1的4条边,故P1的边数为3·4;同样,对P1进行操作,P1的每条边变成P2的4条边,故P2的边数为3·42,从而不难得到Pn的边数为3·4n.

已知P0的面积为S0=1,比较P1与P0.容易看出P1在P0的每条边上增加一个小等边三角形,其面积为1/32,而P0有3条边,故

S1=S0+3·(1/32)=1+(1/3).

再比较P2与P1,可知P2在P1的每条边上增加了一个小等边三角形,其面积为(1/32)·(1/32),而P1有3·4条边,故S2=S1+3·4·(1/34)=1+(1/3)+(4/33),

类似地有

S3=S2+3·42·(1/36)=1+(1/3)+(4/33)+(42/35),

于是有下面利用数学归纳法证明(*)式。

n=1时,由上面已知(*)式成立。

假设n=k时,有Sk=8/5-3/5·(4/9)k.当n=k+1时,易知第k+1次操作后,比较Pk+1与Pk,Pk+1在Pk的每条边上增加了一个小等边三角形,其面积为(1/32(k+1)),而Pk有3·4k条边,故Sk+1=Sk+3·4k·(1/32(k+1))=Sk+((4k)/32k+1)=(8/5)-(3/5)·(4/9)k+1.

综上,由数学归纳法,(*)式得证.

(2)lim(n→∞)Sn=lim(n→∞)[(8/5)-(3/5)·(4/9)n]=(8/5).

15、∵f(x-4)=f(2-x),∴函数的图象关于x=-1对称,∴-b/2a=-1,b=2a.

由(3)x=-1时,y=0,即a-b+c=0,

由(1)得f(1)≥1,由(2)得f(1)≤1,

∴f(1)=1,即a+b+c=1,又a-b+c=0,∴b=1/2,a=1/4,c=1/4,

∴f(x)=(1/4)x2+(1/2)x+(1/4).

假设存在t∈R,只要x∈[1,m],就有f(x+t)≤x.取x=1有f(t+1)≤1.即((1/4)(t+1))2+((1/2)(t+1))+(1/4)≤1,解得-4≤t≤0.对固定的t∈[-4,0],取x=m,有f(t+m)≤m,即((1/4)(t+m)2)+((1/2)(t+m))+(1/4)≤m,化简有m2-2(1-t)m+

(t2+2t+1)≤0解得1-t-(√-4t)≤1-t+(√(-4t))于是有m≤1-t+√(-4t)≤1-(-4)+ √(-4(-4))=9.当t=-4时,对任意的x∈[1,9],恒有f(x-4)-x=(1/4)(x2-10x+9)=1/4(x-1)(x-9)≤0.所以m的最大值为9。

精品小编为大家提供的全国高中数学联赛试题,大家仔细阅读了吗?最后祝同学们学习进步。

相关推荐:

2015年全国高中数学联赛模拟试题及答案

2015年福建省高中数学竞赛试题

免责声明

精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。