编辑:
2011-06-27
二、寻找题目中的等量关系,将需要用到的数据设为未知数
例:一种打印机,如果按销售价打九折出售,可盈利215元,如果按八折出售,就要亏损125元。则这种打印机的进货价为( )。
A.3400元 B.3060元 C.2845元 D.2720元
答案及解析:本题答案选C。解析过程如下:题目假设了两种销售模式,很明显,这两种销售模式所对应的成本(成本=售价-利润)是一样的,可借助这个等量关系列恒等式。假设售价是x元,则有:成本=0.9x-215=0.8x-(-125),解得:x=3400。因此,这种打印机的进货价是0.9×3400-215=2845元。故选C。
例:将大米300袋、面粉210袋和食用盐163袋按户分给某受灾村庄的村民。每户分得的各种物资均为整数袋,余下的大米、面粉和食用盐的袋数之比是1:3:2,则该村有多少户村民?( )
A. 7 B. 9 C. 13 D. 23
答案及解析:本题答案选D。解析过程如下:根据题目条件“余下的大米、面粉和食用盐的袋数之比是1:3:2”可知,“余下的大米+余下的食用盐=余下的面粉”,这个等量关系式就是列方程的依据。假设该村有居民x户,每户分得大米、面粉、食用盐各a、b、c袋。借助题目的等量关系式可列如下方程:(300-ax)+(163-cx)=(210-bx),方程化简为:253=(a-b+c)x,根据题目条件“每户分得的各种物资均为整数袋”可得(a-b+c)是整数,故253应为x的整倍数,用代入法,只有选项D符合条件。
点评:上述两题均是结合已知条件,在题目中找到了等量关系,将需要用到的数据设为未知数,从而列出方程求解。尤其是例4,虽然假设了多个未知数,但是并没有将这些未知数一一求解,这一“设而不解”的做法是方程法的重要思想,值得重点关注。当然,随着考试难度的增加,不定方程和不等式也将会被引入到考题中,考生也要有这方面的准备。
标签:行测辅导
精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。