编辑:sx_wuzx
2015-09-06
自然数的“公倍数”出现的可能性也是非常大的,是考生无法忽视的一个问题,16年国家公务员考试数量关系之最小公倍数的应用的文章希望对大家有帮助。
常见的题型,多是要寻找一个周期性的数值,而这个周期性的数值必须要协调其他几个不同条件相统一。而这个统一周期的寻找,一般都是通过最小公倍数来求解。
常见的题型是:多辆车的再次相遇问题、日期的变化问题、多人的再次相遇问题。
例1:有甲、乙、丙三辆公交车于上午8:00同时从公交总站出发,三辆车再次回到公交总站所用的时间分别为40分钟、25分钟和50分钟。假设这三辆公交车中途不休息,请问它们下次同时到达公交总站将会是几点( )
A.11点20分
B.11点整
C.11点40分
D.12点整
【解析】这一题是一个典型的通过求最小公倍数来确定周期,然后解出答案的题目。40、25、50的最小公倍数是200,也就是说,经过200分钟后,这三辆车再次相遇同时达到终点。也就是经过3小时20分之后,到达三车再次相遇,8点整,经过3小时2分之后,是11点20分,A答案。
例2:1路、2路和3路公交车都是从8点开始经过A站后走相同的路线到B站。之后分别是每30分钟,40分钟和50分钟就有1路、2路和3路车到B站,在傍晚17点05分有位乘客在A站等候准备前往B站,他先等到几路车( )
A.1路
B.2路
B.3路
D.2路和3路
【解析】这个题目的解题思路与上一题非常的类似。自8点开始,每600分钟(40,50,60的最小公倍数),三路车同时经过A站,那么到下午18:00的时候三辆车再次同时经过A站台。由此时间往前推,17:10分的时候3路车经过A站台,17:20的时候2路车经过A站台,17:30分的时候1路车经过A站,由此可见他先等到3路车,选择C选项。
标签:数量关系
精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。