2013河北省考行测辅导:同余问题中的剩余定理

编辑:

2013-03-20

在1000内符合这样条件的数有几个?

【解析】题中3、7、8三个数两两互质。

则〔7,8〕=56;〔3,8〕=24;〔3,7〕=21;〔3,7,8〕=168。

为了使56被3除余1,用56×2=112;

使24被7除余1,用24×5=120;

使21被8除余1,用21×5=105;

然后,112×2+120×4+105×5=1229。

因为,1229>168,所以,1229-168×7=53,就是所求的数。

再用(1000-53)/168得5, 所以在1000内符合条件的数有5个。

【例3】一个数除以5余4,除以8余3,除以11余2,求满足条件的最小的自然数。

【解析】题中5、8、11三个数两两互质。

则〔8,11〕=88;〔5,11〕=55;〔5,8〕=40;〔5,8,11〕=440。

为了使88被5除余1,用88×2=176;

使55被8除余1,用55×7=385;

使40被11除余1,用40×8=320。

然后,176×4+385×3+320×2=2499,

因为,2499>440,所以,2499-440×5=299,就是所求的数。

【例4】有一个年级的同学,每9人一排多5人,每7人一排多1人,每5人一排多2人,问这个年级至少有多少人 ?

【解析】题中9、7、5三个数两两互质。

则〔7,5〕=35;〔9,5〕=45;〔9,7〕=63;〔9,7,5〕=315。

为了使35被9除余1,用35×8=280;

使45被7除余1,用45×5=225;

使63被5除余1,用63×2=126。

然后,280×5+225×1+126×2=1877,

因为,1877>315,所以,1877-315×5=302,就是所求的数。

对剩余定理问题进行直接套用的方式是解决此类题目最快的方法,唐山华图希望考生记住解题步骤,进行相关问题的解决。

更多内容请进入:

src="/uploadfile/2013/0320/20130320121902734.gif"精品学习网公考频道

更多内容请进入:

src="/uploadfile/2013/0320/20130320121902734.gif"精品学习网公考频道

免责声明

精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。