编辑:
2014-03-24
d)用遗传算法实现全局搜索;
e)选取适当的阈值λ,从而获得满意的主观条件属性约?简集;
f)根据该主观条件属性约简集,导出相应的模糊规则集,算法结束。
4 实例
本文以柴油机的供油系统故障诊断为例,表1是由数据形成的故障诊断决策表[3,5]。其中:u?1,u?2,…,u?6分别表示系统的六种状态;c?1、c?2、c?3为条件属性,分别表示稳定修复精度、操作修复精度、鲁棒度;d为决策属性,表示修复效果。
表1 柴油机的供油系统故障诊断系统的连续域决策表
Uc?1c?2c?3d
u?115021
u?216100
u?315212
u?416211
u?515102
u?64020
根据文献[6,7]提供的条件属性分割方法以及文献[8,9]所提供的三角隶属度函数,每个连续属性分成五个模糊区间,其中属性不出现的那些模糊区间就不在模糊表中表示出来了,最终得到该系统的模糊决策表。
这里取β=0.8计算每个条件属性下的各个相似类。
经计算c?1下的各个相似类为
sim??0.8c??1(u?1)={u?1}
sim??0.8c??1(u?2)={u?2,u?4,u?5}
sim??0.8c??1(u?3)={u?3,u?5,u?6}
sim??0.8c??1(u?4)={u?2,u?4}
sim??0.8c??1(u?5)={u?2,u?3,u?5,u?6}
sim??0.8c??1(u?2)={u?3,u?5,u?6}
所以,DCV(c?1)=(3,4,2,4,,3,1)。同理可得DCV(c?2)=(1,3,2,3,4,3),DCV(c?3)=(2,3,3,3,3,2)。
由各个条件属性的数字特征向量,取δ=0.02,使用模糊矩阵闭包运算方法[9,10]可以求得
[t(R)]=10.560.56?0.5610.56?0.560.561
取λ=0.8可得
[t(R)]?λ=1 0 0?0 1 0?0 0 1
在模糊等价矩阵的截集阈值λ=0.8的条件下,各连续条件属性是不相关的。因此表1的主观约简集为{c?1,c?2,c?3},这个结果与文献[8]所得的结果完全一致。
通过这个实例说明,利用本文算法不仅能够解决连续域决策表属性约简问题,而且还可以根据需要获得主观的属性约简集和一组模糊规则集,这说明本算法是可行的。
5 结束语
本文针对粗糙集对于连续域属性决策表的处理能力差以及不容易获得模糊集之间关系等问题,提出一种把模糊集和粗糙集结合起来的连续型条件属性模糊规则约简算法。实例验证表明,采用该算法,用户可以根据实际决策需要和领域知识更改阈值,从而获得满意的模糊规则结果。
连续型条件属性的模糊规则约简算法如上文
相关推荐:
标签:计算机理论
精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。