编辑:
2014-02-19
4.孤子分裂与超连续谱的产生
从上面的实验结论可以看到,由于存在双光子吸收对脉冲功率的损耗,利用SPM 并不能得到较大的展宽。为了克服这一缺点,必须在TPA 带来大的损失前实现频谱展宽。此时,可以借鉴光纤中孤子分裂以及超连续谱产生的方法,利用高阶孤子在波导入射端的孤子分裂现象来得到频谱的展宽。
2007 年,Richard M. Osgood. Jr 等人观察到展宽350 nm 的超连续谱[6]。硅波导横截面积520×220 nm2,长4.7 mm,入射脉冲脉宽100 fs,周期250 kHz。中心波长在1300 nm 到1600nm 之间变化,此波长范围正处于波导的反常色散区,能够得到更有效的超连续谱。实验结果如图4 所示,随着入射峰值功率的增加展宽也逐渐增加。在λ<1700 nm 时,双光子吸收对最大功率有限制作用,但仍能得到较大展宽。
此外他们还观察了超连续谱对波长的依赖性。从图5 中可以看到,中心波长越靠近零色散区(ZGVD),出射光谱展宽越大。这是由于在零色散区线性色散小,非线性作用在脉冲传播过程中占据主要地位。在短波方向有突起的平滑的峰,由于短波方向的光学损耗大,随着中心波长向短波方向移动,峰值越来越小,因此短波方向频谱展宽受到限制。三阶色散微扰导致的孤子分裂以及孤子辐射的影响,在长波方向突起的峰,随着中心波长向长波方向移动,峰值越来越大,这对超连续谱的产生有着决定性作用。
同年,Lianghong Yin 等人通过数值模拟利用入射飞秒脉冲作为高阶孤子得到展宽达400nm 的超连续谱[7]。模拟用直波导截面宽0.8 μm,高0.7 μm,长1.2 cm,入射脉冲带宽50 fs、峰值功率25 W。此时,入射光脉宽远小于自由载流子寿命,而脉冲周期大于自由载流子寿命,故自由载流子吸收在超连续谱的产生过程中不起重要作用。同时从理论上得出双光子吸收只对输入的最大功率有衔制作用,而不影响超连续谱的产生。并且由于Si 的晶格结构,使得受激拉曼散射依赖于硅波导的结构以及入射光的偏振特性,故合理选择硅波导的结构以及入射光的偏振特性,可以忽略受激拉曼散射的影响。模拟中使用N=3 的三阶孤子脉冲,在三阶色散的微扰下分裂成为低阶孤子并伴有色散波,此时出射脉冲得到较大展宽,结果如图6 所示。这是自硅波导超连续谱研究以来在硅波导中能产生的最宽的光谱。
5.硅基超连续谱的应用
随着波分复用技术的广泛应用,为了寻找更好的光源,掀起对超连续谱光源的研究热潮。
硅波导中产生超连续谱将使全光网络向小型化发展,前景诱人,将硅基波导中产生的超连续谱应用到实际,将为全光网络翻开崭新的一页。
波分复用技术是光通信系统的一大优势,要实现能够高速传递信号的片上光通讯系统,波分复用技术是必不可少的,而超连续谱这是一种有效的解决方案。2007 年,Jalali 研究小组成功实现超连续谱的硅基集成化并将展示了其在波分复用系统中的应用潜力[8]。实验中,他们将微盘共振器与硅波导共同集成在一个三维芯片上,使用未集成在芯片上的脉宽为3 ps的激光脉冲作为入射光,脉冲沿着硅波导传播,利用自相位调制效应得到展宽的光谱,然后以微盘共振器作为光滤波器将超连续谱中不同的光谱成分有硅波导中分别导出,从而实现多个波长信道。实验中硅波导与微盘共振器的集成和工作原理如图7 所示。该装置得到的最远信道离入射脉冲中心波长3.1 nm,使硅基超连续谱应用于片上集成的波分复用技术成为可能。
另外,硅基超连续谱还可以在拉曼泵浦方面产生应用。硅波导中的高拉曼增益系数使拉曼散射成为在硅波导中实现激光振荡和放大的有效途径,然而,硅的拉曼增益带宽非常窄,限制了拉曼放大的带宽,从而制约了其在实际应用中的范围。随着硅波导中超连续谱的研究逐渐深入,利用超连续谱的产生机制,在硅波导中产生超连续谱的同时实现拉曼散射效应,由此来增大拉曼增益带宽成为一种可能的解决方法。2008 年,Jalali 研究小组成功实现这一构想,获得展宽的拉曼增益谱[9]。实验中使用中心波长1550 nm 的皮秒脉冲作为泵浦光源,激光脉冲在硅波导中受到Kerr 效应和自由载流子效应的共同作用而发生展宽,从而使拉曼增益谱获得扩展。实验在中心波长为1638 nm 处获得了宽度超过10 nm 的拉曼增益谱。为了观察入射脉宽对拉曼增益展宽的影响,实验中使用两个脉宽不同的入射脉冲,分别为3 ps、42 ps,得到的拉曼增益谱如图8 所示,对于3 ps 的入射脉冲,拉曼展宽频谱起伏不定,并且由于自由载流子的作用频谱明显蓝移。对于42 ps 的入射脉冲,拉曼展宽频谱同样蓝移,但频谱变化相对平滑。另外,在入射功率较大时,能过得到较大的拉曼展宽。实验证明,通过改变脉冲的性质,例如,脉冲功率、脉宽、脉冲啁啾,可以实现对增益范围和形状的调节,从而应用于实现集成化的光信号传输以及可调硅基激光器的研制。
6.结论
硅在电子器件的发展过程中起着举足轻重的作用,目前大部分的器件使用硅作为芯片材料,在硅波导中产生超连续谱将有利于硅基光子器件的实现,并向集成化、小型化发展。目前,实验中能得到的硅基超连续谱宽度仅为400 nm,在实际应用的波分复用系统中,还存在各种各样的损耗,使得展宽大大减小,因此还需进一步的研究,合理设计硅波导的色散特性,减小有效面积增大非线性强度,从而进一步增大展宽,使得硅基超连续谱更加实用化。
小编为您准备的硅基超连续谱的研究进展2014年,希望可以帮到您!
相关推荐:
标签:论文提纲
精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。