编辑:sx_yangk
2015-10-23
纳米材料的小孔径效应和表面效应与化学电源中的活性材料非常相关,作为电极的活性材料纳米化后,表面增大,电流密度会降低,极化减小, 以下就是由小编为您提供的纳米材料在电池中的应用。
(一)纳米级γ-MnO2
夏熙等利用溶胶凝胶法、微乳法、低热固相反应法合成制得纳米级γ-MnO2用作碱锰电池正极材料。发现纯度不佳,但与EMD以最佳配比混合,可大大提高第2电子当量的放电容量,也就是可出现混配效应。若制得的纳米γ-MnO2纯度高时,本身的放电容量即优于EMD。
(二)掺Bi改性纳米MnO2 夏熙等通过加入Bi2O3合成得到改性MnO2,采用纳米级和微米级改性掺Bi、MnO2混配的方法,放电容量都有不同程度的提高,并且存在一个最佳配比。通过掺Bi在充放电过程中形成一系列不同价态的Bi、Mn复合物的共还原和共氧化,有效抑制Mn3O4的生成,可极大地改善电极的可充性。
(三)纳米级α-MnO2
采用固相反应法合成不含杂质阳离子的纳米αMnO2,粒径小于50nm,其电化学活性较高,放电容量比常规粒径EMD更大,尤其适于重负荷放电,表现出良好的去极化性能,具有一定的开发和应用潜力。
(四)纳米级ZnO
碱锰电池中的电液要加入少量的ZnO,以抑制锌负极在电液中的自放电。ZnO在电液中的分散越均匀,越有利于控制自放电。纳米ZnO在我国已应用于医药等方面。由于碱锰电池朝着无汞化发展,采用纳米ZnO是可选择的方法之一。
标签:其它理学论文
精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。