您当前所在位置:首页 > 论文 > 理学论文 > 数学论文

放飞思维 培养学生的创新能力(参考)

编辑:

2014-02-21

学生5:y=x+1的图象是由y=x向上平移一个单位长度得到,y=x-1的图象是由y=x向下平移一个单位长度得到.

……

学生举手的人数很多,意见都很多,很零碎,经过师生一起处理和整理后,得到以上关键的5条.接下来再给出第二组图象让学生进行对比,大家发现基本情况是雷同的,只是三个图象经过的象限是第二、四象限,都呈下降趋势.这时学生已把关键的问题看清.

接着我让学生结合图象的异同与函数解析式中k、b的异同进行比较,归纳.

学生1:一次函数的图象是一条直线.

学生2:函数y=x,y=x+1,y=x-1的3个图象互相平行,都经过第一、三象限,都呈上升趋势,即y随x增大而增大.

……

学生又一次讨论起来.

最后学生与教师一起归纳一次函数的性质.

当学生做笔记时我看了一下手表,啊?!这时已超过了大半节课了,函数性质还有一半内容没讲啊.没办法,学生的思想火花刚点着,我不能在这时把它熄灭了.于是就这样熙熙嚷嚷地完成了一节课,结果呢,我才刚把一次函数的性质完成,几乎没进行过什么练习.

想一想这节课,学生七嘴八舌地说了很多,这个课堂是学生的,而我只是在等待学生说出自己的看法,帮助学生归纳.

(四)向老师挑战,向书本挑战,让思维飞起来

在教学过程中,要鼓励学生不迷信老师和书本的权威.在独立思考过程中,引导学生质疑,引导学生批判地接受,而不是盲目的“复制”,只有这样,才能充分发挥学生的独特的思考方式,培养学生的创新能力.

还记得在教学等腰梯形判定时,课本只给出了关于边与角方面的判定方法.我特意反问同学们:以前的特殊四边形性质与判定我们都是从边、角、对角线三方面研究,大家有没有发现课本还没给出关于等腰梯形对角线方面的的判定,那么“等腰梯形的对角线相等”这个定理的逆命题成立吗?能作为判定定理来帮助我们解答问题吗?这一下子,教室沸腾起来,许多同学质疑起来.我就交给同学们一个任务,挑战一下这个难题,看等腰梯形有没有关于对角线方面的判定定理.很快到了晚修时间,3班同学把刚好经过他们课室的我叫停了,高兴的同学们给我说何XX已经证明“对角线相等的梯形是等腰梯形”,并把证明给我看.我仔细地看了一下,然后面带微笑地走向讲台在黑板上写了几句话:你XX同学已证明了“对角线相等的梯形是等腰梯形”,请把这个判定定理记在课本上,并祝贺XX同学成功了.讲台下马上有同学接上一句话:“我班又多了一位何老师!”我相信同学心中的喜悦已经按捺不住了.从那以后,同学们不时找出许多问题问我,质疑我的做法和课本的做法,曾有位同学发现课本的例题应有两种情况,而课本只有一种情况……“除了老师讲的、书本写的还有没有别的思考方法吗?”鼓励和引导学生不迷信老师和书本的思考方式,勇于提出自己的见解.

社会主义现代化建设需要丰富的想象力和巨大的创造力,而学校教育正是培养具有丰富想象力和巨大创造力人才的摇篮.在教学中,教师要树立新的教学理念,注重培养学生的创新思维,鼓励学生独立思考、大胆质疑,引导他们善于从多角度看问题,让学生在放飞思维中收获成功.

 

小编为您准备的培养学生的创新能力,希望可以帮到您!

 

相关推荐:

论初中数学的例题的选用原则

标签:数学论文

免责声明

精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。