您当前所在位置:首页 > 论文 > 理学论文 > 数学论文

利润类应用题教学的思考的策略应对探讨

编辑:sx_houhong

2014-04-22

利润类应用题教学的思考的策略应对,利润问题是用一元二次方程解决问题的4个典型例题之一,也是初中阶段用方程思想和模型解决的最后一个应用题.

利润问题是用一元二次方程解决问题的4个典型例题之一,也是初中阶段用方程思想和模型解决的最后一个应用题. 我在利润类应用题教学中进行了一些思考与实践.

■ 课前思考

苏科版九上“ 4.3用一元二次方程解决问题”的问题4是:

某商场销售一批衬衫,平均每天售出20件,每件赢利40元. 为了扩大销售,增加赢利,商场决定采取降价措施. 经调查发现,在一定范围内,衬衫的单价每降1元,商场平均每天会多售出2件. 如果商场通过销售这批衬衫每天要赢利1200元,衬衫的单价应降多少元?

1. 学情分析

用一元二次方程解决问题中的利润类问题,数量关系较多且复杂,很多学生读完题后,不知其所以然,即不知从哪里入手分析,不知道该题型的数量相等关系是什么. 所以一旦出现此类考题,失分面就非常大,不过,此题型是中考重要题型. 许多教师利用课本上的列表法梳理数量关系,但到具体问题时,却很少有学生通过列表分析数量关系,所以最后还是有很多学生不会解题;有的教师则利用“自主探究,合作交流”的方法教学,成绩好的学生解答后,让其说出方法,教师再强调,随后让学生解答其他类似类型的题目,但效果还是不好. 这里的教学重点是分析利润类问题中的数量关系,列出一元二次方程并求解,教学难点是寻找利润类问题中的相等关系.

2. 从生活出发,提纲挈领

利润类问题有一个最大的特点,即问题的落脚点在于“降价(提价)后获得总利润××元”. 我将“降价(提价)后获得总利润××元”定义为关键词,由题意可得“降价(提价)后每件利润×降价(提价)后所售件数=降价(提价)后获得总利润××元”. 设好未知数后,结合题中已知量,寻找“降价(提价)后每件利润”“ 降价(提价)后所售件数”,从而列出一元二次方程,解决问题. “关键词”好比“牛鼻子”,再强壮、再有劲的牛,只要牵住它的鼻子,它一定会乖乖地跟你走.

■ 课堂实践

1. 分析、解决问题

师:商场销售这批衬衫,平均每天售出20件,每件赢利40元,每天赢利多少元?

标签:数学论文

免责声明

精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。