您当前所在位置:首页 > 论文 > 理学论文 > 数学论文

化归思想在立几中的探究分析

编辑:

2014-04-25

(2)当E恰为棱CC1的中点时,求证:平面A1BD⊥平面EBD.综上可见,运用化归法解立体几何题是一种很有力的工具,我们在解题当中,应当熟悉和掌握这一工具,并能自觉地运用这一工具。化归是一种重要的数学思想。实际上,中学数学中,化归方法的应用不仅体现在立体几何中,它无处不在。所以数学中注意化归思想的培养对学生学习数学,发展解题能力都无疑是至关重要的。

化归方法之间彼此密切联系,只是表现形式有所侧重,总的来说,化归方法就是把未知问题转化为已知问题,化归思想在立几中的探究把陌生问题转化为熟悉问题,把繁杂问题转化为简单问题。而这里所说的转化,不是无目的活动,问题的内部结构和相互之间的联系,决定了处理这一问题的方式、方法。因此教师要充分揭示问题间的内部联系,帮助学生学会分析问题,创造条件,实现转化,是掌握化归方法的关键。

相关推荐:

关于巧用数学方法提升学习潜能技巧

标签:数学论文

免责声明

精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。