您当前所在位置:

从记数法到复数域:数系理论的历史发展

2013-03-01

“0”作为记数法中的空位,在位置制记数的文明中是不可缺少的。早期的巴比伦楔形文字和宋代以前的中国筹算记数法,都是留出空位而没有符号。印度人起初也是用空位表示零,后来记成点号“· ”,最后发展为圈号。印度数码在公元8世纪传入阿拉伯国家。13世纪初,意大利的商人斐波那契(Leonado Fibonacci, 1175 - 1250)编著《算经》(Liber Abacci,1202),把包括零号在内完整的印度数码介绍到了欧洲。印度数码和10进位位置制记数法被欧洲人普遍接受后,在欧洲的科学和文明的进步中扮演了重要的角色。

二、大数记法

古代希腊人曾经提出一个问题:他们认为世界上的沙子是无穷的,即使不是无穷,也没有一个可以写出来的数超过沙子的数。阿基米德(Archimedes,BC287 - 212)的回答是:不。在《数沙术》中,阿基米德以万(myriad)为基础,建立新的记数法,使得任何大的数都能表示出来。他的做法是:从1起到1亿(原文是万万,myriad myriads, 这里按照中文的习惯改称为亿)叫做第1级数;以亿(108)为第2 级数的单位,从亿到亿亿(108)2叫做第2级数;在以亿亿为单位,直到亿亿亿(108)3叫做第3级数。直到第1亿级数的最后一数亿亿 。阿基米德算出充满宇宙的沙子的数目不过是1051,即使扩充到“恒星宇宙”,即以太阳到恒星的距离为半径的天球,也不过只能容纳1063个沙粒!

同样的问题也出现在中国古代。汉代以前,数皆10进,以10万位亿。韦昭解《国语·郑语》第十六:“计亿事,材兆物,收经入,行垓极”。注称“计,算也;材,裁也。贾唐说皆以万万为亿,郑后司农云:十万曰亿,十亿曰兆,从古数也。”《数术记遗》中则详细记载了对大数的一整套命名和三种进位方法。《数术记遗》称:

黄帝为法,数有十等,及其用也,乃有三焉。十等者亿、兆、京、垓、秭、壤、沟、涧、正、载;三等者,谓上、中、下也。其下数者。十十变之,若言十万曰亿,十亿曰兆,十兆曰京也。中数者,万万变之,若言万万曰亿、万万亿曰兆,万万兆曰京。上数者,数穷则变,若言万万曰亿,亿亿曰兆,兆兆曰京也。从亿至载,终于大衍。

《数术记遗》中的“大数之法”的数学意义并不仅仅在于它构造了三种记数方法,更为重要的是它揭示了人们对数的认识从有限走向无限的艰难历程。客观的需要和数学的发展都促使人们去认识和把握越来越大的数。起初,对一些较大的数,人们还可以理解它,还能够利用已有的记数单位去表示它。但是,随着人们认识的发展,这些大数也在迅速的扩张,原有的记数单位难以为用。人们不禁要问:

数有穷乎?

这是数系发展中的需要回答的重大命题。《数术记遗》中记载的徐岳和他的老师刘洪的对话,精彩的阐明了“数穷则变”的深刻道理: