您当前所在位置:首页 > 论文 > 医药学论文 > 临床医学论文

试论从肾脏角度认识全身炎症反应综合征

编辑:sx_chenqy

2014-11-23

在SIRS和败血症以及继发组织损伤时, 释放一些不能控制的细胞因子进入循环, 引起血液动力学不稳定、 广泛的组织损伤, 导致内脏器官的炎症反应。以下就是有关从肾脏角度认识全身炎症反应综合征的论文了。

试论从肾脏角度认识全身炎症反应综合征

1991年美国胸科医生学会与危重感染急救医学(ACCP/SCCM)在芝加哥联合召开的讨论会上进一步确认全身炎症反应综合征(SIRS)的概念[1]。 SIRS是由感染或非感染因素刺激宿主触发炎症过度反应的结果, 这些因素刺激宿主免疫系统, 释放体液和细胞因子, 对血管张力和渗透性产生影响, 导致微循环障碍、 休克或器官衰竭, 即多器官功能障碍综合征(MODS)。 SIRS是MODS的必经之路, 而MODS是SIRS的必然发展结果。

细胞因子是全身炎症反应综合征的重要介质[2]

在SIRS和败血症以及继发组织损伤时, 释放一些不能控制的细胞因子进入循环, 引起血液动力学不稳定、 广泛的组织损伤, 导致内脏器官的炎症反应。 在此过程中, 细胞因子起信息分子作用, 发出不同的细胞反应信号, 引起细胞和体液反应。 从单核细胞、 吞噬细胞和其它细胞释放细胞因子后, 通过与初始信号传递受体结合生成第二信息, 引起细胞间信号效应, 包括重要酶的磷酸化, 影响细胞行为基因产物的表达或失活。 细胞因子显示十分广泛的特性, 包括能启动细胞因子及其网络系统活化, 调节受体结合能力。 特别在SIRS和器官障碍的发生机制上, 细胞因子的特殊作用是多方面的, 因为细胞因子显示出基因多态性和多效性。 有趣的是, SIRS也伴有释放相反作用的炎症分子、 可溶性肿瘤坏死因子受体(sTNFR)、 IL-1受体拮抗物(IL-1ra)和IL-10, 参与调节细胞因子释放与促炎症因子和抗炎症分子的平衡, 可能对炎症反应的严重性起决定性作用。

全身炎症反应综合征和败血症的发生机制

败血症的临床特点是宿主对感染刺激过度反应的结果, 尽管体内防御机制对机体是有益的, 能中和侵入的微生物, 清除损伤的细胞和修复破坏组织, 但过度的活化可能是有害的。 近来研究表明, SIRS的关键步骤是感染损伤: 如内毒素、 外毒素、 革兰阳性(G+)细菌细胞壁成分、 病毒和真菌; 以及非感染性损伤: 细胞碎片、 补体成分、 免疫复合物等都可以刺激宿主免疫系统, 产生一些重要的介质, 如激肽、 血小板活化因子(PAF)、 NO、 活性氧自由基和其它介质, 它们能影响血管张力和渗透性, 引起微循环障碍, 最后导致休克和器官衰竭。 SIRS是源于各种损伤引起的全身炎症(inflammation)反应, 而败血症仅限于是感染(infection)所引起的反应。 败血症和SIRS初始相特点是生成一些过量的促炎症体液介质, 属于细胞因子网络、 补体系统、 凝血和纤溶系统。 同时还有一些中性粒细胞、 单核细胞、 内皮细胞和宿主反应系统的其它细胞活化。 体液和细胞炎症介质活化, 损伤内皮细胞, 导致内皮功能障碍, 刺激血管活性 介质合成。 这些介质特点是使血管收缩(内皮素-1)或扩张血管(PGI2, NO), 常伴随败血症性休克。 内毒素和细胞因子引起NO合成不仅导致严重低血压, 降低对血管收缩物质的反应性, 还能抑制重要的细胞呼吸酶。 由于内皮细胞和吞噬细胞增加粘附分子的表达, 加重由多形核白细胞(PMN)介导的组织损伤。 活化的白细胞在接触内皮细胞时, 释放毒性氧自由基、 溶酶体蛋白酶, 因此促进血管渗透性, 引起毛细血管漏出增加, 形成间质水肿。 由于毛细血管渗漏和供氧障碍, 致持续性低血压, 并伴有微循环障碍, 引起组织低灌流和低氧血症。 如果这个过程不中断, 将导致急性肾功能衰竭(ARF)、 心血管和肺功能不全, 最后发生多器官衰竭。

SIRS和败血症是一种对刺激因素不能控制的炎症过度反应过程, 最终引起器官衰竭或死亡。 有证据表明, 与损伤刺激反应平行的还有一种抗炎症反应, 称为代偿性抗炎症反应综合症(CARS)。 已明确CARS的重要介质, 如IL-4, -10, -11, -13、 转化生长因子-β(TGF-β)、 克隆刺激因子(CSF)、 sTNFR、 IL-1ra。 研究表明某些介质, 特别是白介素对单核细胞影响较大, 表现抗原提呈作用, 抑制T-和B-淋巴细胞活化, 包括T-淋巴细胞特异性抗原增生, 将引起免疫抑制。 事实上, 这些介质都能下调自身的合成, 如果机体代偿性抗炎症反应不足, 则临床将表现增加对感染的易感性。 如果促炎症介质与抗炎症介质之间不平衡, 则将出现SIRS或CARS。 已证明, 持续存在高浓度促炎症介质与抗炎症介质将预示不良的后果。 当SIRS为主时, 抗炎症治疗是有益的, 当CASR占优势时, 刺激免疫系统产生粒细胞刺激因子、 干扰素-γ、 IL-13是有帮助的。 所以辨认在哪个过程(SIRS或CARS), 采取不同治疗措施是至关重要的。

肾脏是全身炎症反应综合征和败血症休克的靶器官[3]

内皮细胞损伤的结果多累及心-肺和肾, 败血症休克常伴有ARF, 其肾损伤的机制是复杂的, 涉及细菌产物和宿主反应性。 以往多数研究局限在脂多糖(LPS)诱导的ARF。 首先是血液动力学改变, 引起持续性低血压, 导致肾缺血及肾小球滤过率下降。 进一步研究表明, ARF在无血液动力学改变时也可发生, 表明LPS对肾有直接作用。 肾小球系膜细胞表达mCD14, 可能是由于脂多糖结合蛋白/脂多糖(LBP/LPS)复合物刺激合成细胞因子(IL-1, IL-6, TNF)、 趋化因子(IL-8, MCP-1, GROα, RANTE, GROβ)和PAF。 同样, 肾小管上皮细胞不能表达mCD14, 可由LPS直接刺激, 通过与sCD14反应产生活性氧自由基、 促炎症细胞因子。 这些细胞也可产生几种趋化因子, 包括MCP-1、 RANTEs、 CINC、 MIP-2和IL-8。 因此肾功能受ATⅡ和去甲肾上腺素浓度增加和某些介质(二十烷类、 细胞因子、 内皮素、 NO和PAF)的影响。 离体肾灌注试验表明, LPS的间接影响大于直接影响。 LPS刺激PMN产生的另一种介质是PAF, PAF是由LPS?碳は的は赴??nbsp;内皮细胞和白细胞而合成, 在内毒素休克时, 外膜蛋白(prins)及LPS诱导的细胞因子(如TNF、 IL-1)和PAF在血液和肾脏浓度增加。 PAF直接作用在离体的肾小球, 使系膜细胞收缩, 肾小球面积减小。 因此TNF和IL-1是通过产生PAF的机制收缩系膜细胞。 PAF刺激离体灌注鼠和兔的肾脏合成血栓素A, 刺激培养的系膜细胞生成活性氧自由基。 体内输入PAF导致肾小球滤过率(GFR)和肾内压力下降, 尿量和钠排泄减少。 TNF可使肾小球内皮细胞和上皮细胞内皮素合成增加, 很低浓度内皮素即可导致GFR和肾血流量(RBF)显著减少。 事实上, 抗ET-1抗体能改善LPS灌注的肾脏功能。 此外, 内毒素血症增加肾脏NF-κB(一种转录因子)和诱导型一氧化氮合成酶(iNOS)mRNA的表达, 同时常伴有低血压、 GFR下降和肾小球内皮细胞一氧化氮合成酶(NOS)的抑制。 发现选择性抑制iNOS可防止血压下降和GFR降低, 恢复内皮细胞NOS。 与非选择性抑制NOS对比, 进一步降低GFR, 引起广泛肾小球血栓, 增加死亡率。 这个结果表明, LPS导致局部介质产生血管舒张和收缩物质的表达不 平衡, 引起肾血流量明显下降。 最后, 表明在肾脏由LPS诱导的转录密码FasL和Fas(凋亡信号受体系统), 在LPS诱导的ARF和器官衰竭中的作用。

免责声明

精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。