编辑:
2014-05-16
爱因斯坦一生的梦想就是追求宇宙统一的理论。他用简洁的表达式E=mc2揭示了自然界中质能关系,这不能不说是一件统一的艺术品。人类在不断探索者纷繁复杂的世界,又在不断地用统一的观点认识世界,宇宙没有尽头,统一美也需要永恒的追求。
数学的发展是逐步统一的过程。统一的目的也正如希尔伯特所说的:“数学中每一步真正的进展都与更有力的工具和更简洁的方法的发现密切联系的,这些工具和方法同时会有助于理解已有的理论并把陈旧的、复杂的东西抛到一边。”
5数学方法的简捷美
解题方法的简单、巧妙是一种理性的美,简捷的解题方法和明快的思维令人心旷神怡,在心里激起愉快的情感体验和愉悦的美感,在成功的喜悦中对数学审美和数学创新会有更迫切的要求。
例如,求极限:cos x coscos……cos该极限直接计算是无法得到结果的,但只要我们注意到三角函数的倍角公式2sinαcosα=sin2α和=1,就可以将极限号内的无限多个函数转化为有限多个函数,于是就有:
cos x coscos……cos
=cos x coscos……cossin/
=cos x coscos……(2cossin)
=cos x coscos……cossin
=…==1,这就是一种美妙而简单的解法。
又如求极限,完全可以利用它与重要极限公式=1的相似性来解•=1,而获得成功。
利用数学的美感激发创新灵感,迸发创造性思维火花,产生许多新颖别致又简捷的解题方法和技巧,解题者因此得到愉快的心灵感受,从内心自觉地产生发现、运用和创造数学美的渴望,增强学好数学的浓厚兴趣,不断提高数学能力。
6数学理论的奇异美
数学中许多理论与人们的直觉相背离,有时让人觉得不可思议,给人以无尽的遐想,有时又带给人一种“山穷水复疑无路,柳岸花明又一春”的绝妙境界,它印证了我国数学家徐利治所说的:“奇异是一种美,奇异到了极限更是一种绝佳的美”。
例如,有无限个连续点(无理点)和无限个间断点(有理点)的黎曼函数f(x)=x=(为既约真分数)0x=0,1及(0,1)内的无理数;在任一点都不连续狄利克雷函数f(x)=0x∈Q1x∈;处处连续但处处不可微的魏尔斯特拉斯函数f(x)=bcos(απx)(其中α为奇数,01+π),这些函数我们都无法准
确地描绘出它的图像。但是黎曼函数、狄利克雷函数和魏尔斯特拉斯函数的美就恰似一幅幅神奇的抽象画,虽奇异古怪,却是数学家们依靠想象而产生的艺术精品。
与之相反,数学家皮亚诺构造出的可充满一个正方形的曲线“皮亚诺曲线”,高等数学的美学探索也让我们感受到数学的“奇异美”。
总而言之,高等数学中包含的数学美的内容是非常丰富的,正如罗素所说:“数学,如果正确地看它,不但拥有真理,而且有至高的美”。只要我们善于去观察,善于去总结,我们还会有所发现,有所创新。把它们及时地引进课堂,对高等数学的教学是非常有利的,让越来越多的人感受到高等数学的美,引导学生对美的追求,使他们逐步体验到数学美,使他们摆脱“苦学”的束缚,走入“乐学”的天地。
相关推荐:
标签:美学论文
精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。