您当前所在位置:

指数函数教学设计的三个改进案例

2012-08-03

指数函数是高中数学的重点内容之一,从教学要求看,一是理解指数函数的定义;二是掌握指数函数的图像与性质。下面是笔者在公开教学中对指数函数教学设计的三处改进。

案例一:新课引入的改进

(一)原始设计

1.复习旧知:

②函数y=x的定义域是

2.引入新课:师问:函数y=()与函数y=x,从形式上看有什么不同?生答:从形式上看,前者指数是自变量,后者底数是自变量。(引入课题)

(二)改进设计

1.创设情境:有人说,将一张白纸对折50次以后,其厚度超过地球到月球的距离,你认为可能吗?设白纸每张厚度为0.01mm,已知地球到月球的距离约为380000千米。

对折的层数y与对折次数x的函数关系式是什么?设纸的原面积为1,对折后纸的面积z与对折次数x又有什么关系?(y=2x,z=()x)

2.提出问题:师问:能发现y=2x,z=()x的共同点吗?

学生思考片刻,教师提示:从形式上,有什么共同点?并用红粉笔标出指数x。

生答:指数x是自变量,底数是大于0且不等于1的常数。(引入课题)

(三)教学反思

凯洛夫的“五环节”教学理论:“复习旧课—导入新课—讲授新课—巩固—作业” 目前还深深地影响着我们的教学。但如果总是这样一成不变,就显得呆板与程式化。我们现在上课总喜欢说:“今天我们学习……”。教师不说,学生不问,教师怎么讲,学生就怎么学。我们知道,数学来源于生活,又应用于实践。在原始设计中,先复习与新授知识相关的内容,然后再从实际引入新课,与教材编排相一致,这样就数学讲数学,显得枯燥无味,很难调动学生的学习兴趣。为此,从学生感兴趣的一个生活实例出发,引起学生注意与争议,教师再创设实际问题情境,就激发了学生的学习兴趣,牢牢地吸引了学生的注意力,增强了学生的求知欲望,强化了学生内在的学习需求,巧妙地导入了新课。

案例二:多媒体使用的改进

(一)原始设计

1.电脑作图:教师用多媒体演示y=2x、y=()x的作图过程。

2.观察猜想:教师引导学生观察y=2x、y=()x的图像,猜想y=3x的图像形状。

3.电脑验证:教师用几何画板做出y=3x的图像,验证猜想。

4.归纳猜想:由特殊到一般,给出指数函数的图像分为01两类,并用多媒体演示它们的图像特征和性质。

(二)改进设计

1.学生作图:在教师的指导下学生分组后用几何画板作y=2x、y=()x的图像。然后,让学生在电脑上作y=3x,y=5x y=10x,y=0.2x,y=0.7x等函数的图像,并对图像形状的变化加以观察与讨论。

2.猜想形状:让学生猜想函数y=8x,y=0.3x的图像形状,师生讨论,并列出有关观察结论。

3.分组探究1:一般地指数函数的图像大致有几类(几种走势)?

4.分组探究2:分别满足什么条件的指数函数图像大致是图1、图2?

5.电脑验证:用几何画板作y=ax(a>0且a≠1)图像,任意改变a的值,展示底变化对图像的影响。