您当前所在位置:

关于统计数据质量管制分析

2012-09-26

【编者按】:数学论文是科技论文的一种是用来进行数学科学研究和描述研究成果的论说性文章。精品学习网论文网为您提供数学论文范文参考,以及论文写作指导和格式排版要求,解决您在论文写作中的难题。

【摘要】我国政府于2002年4月15日正式加入了数据公布通用系统。统计虽然“入世”了,但不论是与社会各界对统计信息的需求相比,还是对统计核算和统计数据公布的国际准则的运作要求相比,我国的统计数据质量目前都还有一定差距。为了更好地满足社会经济发展过程中社会各界对统计数据的需求,使我国统计进一步与国际接轨,有必要对我国统计数据质量管理进行研究。

【关键词】统计数据;质量问题;国家统计局

统计数据质量问题是衡量统计工作的核心指标。尤其是我国加入WTO,与世界经济接轨的今天,社会各界对统计信息的需求量越来越大,对统计信息质量的要求也越来越高。统计信息质量的高低直接影响和决定着统计信息的可利用性。统计数据质量低下将会直接导致错误的决策。因此,努力提高统计数据的质量,实现统计信息的准确、有效、全面、有着重要的意义。

一、统计数据质量的含义

传统的统计数据质量仅仅指其准确性,通常用统计估计中的误差来衡量。但如今“质量”的概念被拓宽了,“统计数据质量”的概念也有必要拓宽。目前各国统计机构和有关国际组织对统计数据质量含义的解释和理解仍存在一定的分歧,对统计数据质量应涵盖哪几个方面,还没有统一的标准。各国从本国的实际情况以及对数据质量含义的理解出发,确定了不同的数据质量标准。如英国政府统计数据质量标准是准确性、时效性、有效性、客观性;韩国的质量标准则是适用性、准确性、时效性、可索取性、可比性、有效性。在我国,统计数据质量主要包括统计数据的核心质量、形式质量及延伸质量三大方面。

二、我国统计数据质量管理现状及存在问题

改革开放以来,我国统计人员大胆探索,辛勤实践,在指标体系、调查方法、统计标准、技术手段、数据报送与处理方式等方面进行改革,较好地满足了社会各界对统计信息的需求,推动了统计事业的发展。但是,浮夸风以及片面追求假、大、空现象仍然存在,这些都违背了统计工作的基本要求,阻碍了统计工作的发展。目前我国统计数据质量管理上存在的问题主要有:

1.统计数据失真。统计制度不够完善是造成统计数据失真的内在因素,表现在:统计部门内部各专业在统计方法、指标涵义、口径上还存在一定程度上的不统一;专业间统计方法改革不同步;统计范围、口径的理论值与实际值出入有时还比较大;统计与财会在核算周期上还存在一些差异,并且在统计数据质量管理上各级统计管理部门在统计执法过程中力度不够,对统计过程缺少制约与监督,对统计数据缺乏校验与复查的有力措施。

2.设计时需求不明确,缺乏远见。数据库与文件管理系统的重要区别之一在于不仅存放数据,而且存放数据之间的相关性。相关性不仅表现在数据依存的时间、地点、类型和名称等原始属性上,还会在数据的转移过程中产生再生的相关性。搜集数据阶段使用的方法不正确,应用需求不明确等都会影响数据完整性和准确性。

3.数据处理手段发展不平衡。数据处理手段出现从基层的手工操作到省、国家一级政府统计数据处理的高度信息化。就地域而言,占全国70%以上的地方统计数据处理是手工操作或半手工操作,速度慢、效率底,可靠性差,这与统计的及时性要求不相符合。统计所反映的当前经济现象的真实性难以确定。

4.质量管理监督措施不够健全。由于多数检索系统没有进入实际应用阶段,数据质量的控制和监督往往被人们忽视。绝大多数单位在数据准备、录入阶段缺乏审核等质量控制、监督措施,著录标引的检查,一般采取自己审核或互相审核的方法。缺少科学的统计数据质量评估和监控造成统计数据不同层次脱离实际的偏差,给决策带来极大的不便。

5.统计人员队伍素质不高。基层统计工作薄弱,统计手段落后,统计人员素质比较低,基层统计队伍不稳定都影响了统计数据质量。

三、我国统计数据质量管理问题的原因分析

在目前我国统计数据质量管理中,以单项数据质量管理为主,缺乏综合的、全面的质量管理体系;对数据质量内涵的理解相对来说仍较为狭隘,在实践中主要围绕着数据准确性进行评估,对数据质量的其他方面重视不够;在评估过程中,没有让社会公众和用户充分参与进来,评估机制缺乏必要的透明和有效性,未能取得社会各界对数据资料的充分理解和认可;对于多种经济成分的数据质量评估方法不够明澈;缺乏明确的数据质量管理要求和目标。

从数据质量管理的角度来看,我国统计数据质量管理存在诸多问题的原因在于:

1.统计数据质量理论及其控制技术与政府统计实践脱节。各种统计数据质量控制技术在我国的实际统计工作中的研究和应用不多,对于经常性统计数据质量控制,实际上还主要是采用事后的分析评估和挤水分的方法,而事前的分类预防控制不多,建立误差模型进行分析的也不多,所应用的仅有的一些事后质量控制技术和统计数据质量管理的组织活动没有实现很好的结合,虽然指定了主要统计数据质量的评估方法,但具体方法的应用、由哪些部门负责以及这些部门的质量责任、职权和义务并不明确。

2.统计数据质量管理中的全面质量管理并不全面。全程性上,只重视调查环节,不重视统计设计环节对数据需求的研究,从而影响数据相关性、及时性的提高;全域性上,所实行并取得很大成功的统计数据全面质量管理的措施及经验,主要集中于几个专项的普查,应用范围较窄;全员性上,只重视统计系统内部的人员控制,而对统计系统外部的,占统计工作人员2/3的基层统计人员却无从控制。

3.缺乏明确的质量管理目标和统一的质量管理规范。对统计数据质量管理缺乏明确的质量方针和质量目标,缺乏相对统一的统计数据质量管理标准和规范,导致了统计数据质量的混乱。