所谓教学情境,是指“在教学过程中,教师出于教学目标的需要,根据一定的教学内容,用真实的情境呈现有待解决的问题”。
教师创设问题情境的目的,是把数学新知的学习建立在学生生活实践的基础上,通过营造现实有趣的学习背景,引导学生观察实物或教具,让学生亲自动手实验与测量,以获得知识,用熟悉的生活实例说明数和形的特征,说明法则与公式的由来。
创设情境让学生有机会感悟数学:看到数学起源于现实,看到数学应用于生活,感知到数学是对客观世界进行空间形式和数量关系方面的猜想化、形式化的刻画,进而认识数学是认识世界、改造世界的工具。
2.处理好创设情境与“数学化”的关系
数学教学中强调创设情境,不是说数学等同于情境,再好的情境都有它的局限性,它不像数学概念那样准确与简洁。曾经听过角的概念的教学,老师出示钟面创设情境,要求学生找出钟面上时针与分针组成的角,当学生指出时针与分针是两条线段不能组成角时,老师只能张口结舌。与上例直线一样,现实情境的有限性难以描述抽象概念的无限性,现实情境的离散性难以表达直线的连续性。由于数学“是忽略了物质的具体运动形态和属性的抽象结构与模式”,教师要善于提炼情境中包含的数学概念的本质属性,让学生经历“数学化”的过程。
所谓“数学化”,简言之,即用数学的思想与方法将实际材料组织起来。数学教师在数学教学中不仅要创设问题情境,重视数学与外部的联系,而且特别要重视数学内部的逻辑联系。正如弗赖登塔尔所说:“数学教学不要教孤立的片段,应该教连贯的教材。”
创设问题情境的学习方式必须符合学生的认知规律:从直观到严谨、从特殊到一般、从具体到抽象。这样既便于建立新旧知识之间的非人为的实质性联系,又有利于感受数学知识的形成过程、感受数学发现的拟真过程,让学生学会数学地思考。在以上“直线”“集合”和“角”的概念教学中,都有一个从具体情境到抽象数学模式之间“数学化”的提炼过程。而数学化的过程不同程度经历辨别、分化、类化、抽象、检验、概括、强化、形式化等步骤,它体现了数学教学的核心价值——数学化。
3.防止负情境
低级庸俗与科学性缺失的情境实际是一种负情境。我们曾经见过这样的案例。
一位语文老师在教学唐诗,当讲到“柴门闻犬吠”时,要求学生创设情境,模仿大狗吠、小狗吠、单狗吠、群狗吠,教室中一片狗吠之声。一位数学教师在教学《假分数》的时候,她为了体现新课程“创设问题情境”的要求,创设了如下的“教学情境”:
师:母亲的年龄大,还是儿子的年龄大?
生:母亲的年龄大。
师:如果“儿子的年龄比母亲的年龄大”,这是真的还是假的?
生:假的。
师:好的。既然“儿子的年龄比母亲的年龄大”是假的,那么分子大于分母的分数叫做假分数。
根据概念的定义规则,定义概念的外延与被定义概念的外延必须相同,否则就要违背了“定义应该是相称的”这一规则。从逻辑思维的角度,该教师犯了“定义过狭”的逻辑错误,即属加种差的外延小于被定义概念的外延,因为不仅分子大于分母的分数是假分数,分子等于分母的分数也同样是假分数。如同负数比零要小,负情境要比零情境的教学效果更差。
此外,形式主义也是当前创设情境的大忌,也是一种负情境。比如,一位老师在教学《等可能事件》时,它运用多媒体现代教学手段来创设情境,“刻意地用电脑课件去取代学生的实践活动,把学生的地位从操作主体变成局外看客,把数学教学的直观性从最强的“实物直观”降低为等而下之的“影像直观”。
在数学教学中,当需要培养学生的想象能力、抽象能力和逻辑推理能力的时候,若用屏幕上有限的“形象”代替了启发学生的数学“想象”,用屏幕上个别的“具体”取代了启发学生的数学“抽象”,用屏幕上的快速推导,取代了板书教学中边写边想师生互动的逻辑渐进过程,反而会减弱对学生的数学思维能力训练。
四、问题的解决
下一篇:浅论小学数学中概念教学