(4)以上这些摆法中,相同的一步是什么?(凑十)?
通过以上操作和思考,要在学生的大脑中形成这样一种认识,即“从( )里拿出( )与( )凑成十,再加上余下的( )得( )”,并让学生自己总结出这种拿法不是唯一的。这样,不仅强化了学生对“凑十”规律的认识,而且恰在认知的结合部加强了同化作用,同时也培养了学生思维的灵活性。如果再辅之以反复训练,就能比较容易地使学生做到20以内的进位加法脱口而出。?
当然,操作问题的设计、编制与探究要求的拟定、提出,既要有挑战性,能够唤起学生操作热情和探究欲望;又要有适切性,能使多数学生经过努力有所获,亦即我们常说的“跳一跳,够得着”。为此,相应的策略,一是在学生原有学习基础的最近发展区内设置问题,提出要求,使新的学习课题与原有知识的固着点之间保持适度的潜在距离。二是根据学生的不同认知水平,因人而异地提出操作问题及其要求。有时,还可将问题分解,形成有若干台阶的“问题群”,使问题的难易程度与学生的能力相匹配。
例如,让学生用两张全等的梯形纸片作寻求梯形面积公式推导途径的操作,所提问题可以保持一定的认知差距:怎样转化成面积公式已知的图形?也可以点明转化方向:怎样拼成一个平行四边形,以缩短认知差距。对于梯形面积公式的得出,可以只提一个中心问题:怎样由已知的面积公式得出梯形面积公式?也可以分解成问题群:平行四边形的底与梯形的上、下底有什么关系?平行四边形的高与梯形的高有什么关系?等等。此外,对于学有余力的学生还可以提出寻找多种转化、推导方式的要求。
二.操作时的有关策略
一位教师在教学《乘法的初步认识》时,先让学生用小棒摆一个喜欢的图形,然后提出在规定的时间内,能摆几个这样的图形。活动结束后,老师让学生算算一共用了几根小棒,把刚刚摆的图形用加法来表示。结果学生的答案各不相同:3+3+3+4+4+4;4+4+4+3+3+5;3+3+3+3+3; 5+5+5+5+5;3+4+5+3+3;……从反馈的情况看,有些学生在操作中摆的不是同一种图形,这可能是老师在布置任务的过程中,这些同学没听清楚或是没等老师说完就急着开始先摆了。通过这些加法算式去探寻乘法的意义,恐怕也是个问题。
这里涉及到在学具操作活动前的定向指导。首先是要有明确的指导语,使学生知道“做什么”和“怎样做”。其次是根据需要配以教具演示与必要的启发、讲解,展现操作的程序及其内在逻辑性。有时,还可采取分步定向指导,逐渐完成操作的策略,以求实效。当然,在操作的过程中,教师必须深入到学生中去,及时发现问题,并加以指导解决。在上例中,如果教师能适时的介入学生的活动,可能反馈时不会出现上述问题了。
学生的年级越低,教师更要加强指导。小学生的知觉选择性尚在发展,有意注意难以持久。在低年级听课中,常有不少学生在摆弄学具时常被学具的形状、色彩等外部特征所吸引,不能在操作过程中始终保持定向的注意。尤其是当观察的重点为操作的过程而非操作的结果时,常常并没有对稍纵即逝的过程给予足够的注意。鉴此,在操作过程中和操作结束后,都要指导学生仔细观察。指导的内容,一是观察的重点,主要观察什么;二是观察的方法、顺序,怎样观察。对于操作过程中的指导,要引导学生将观察与操作有机地结合起来。这样学生离开学具后,才有可能在头脑中留下准确、完整的表象,进而达到促进分析综合,帮助抽象概括的作用。
三.提高操作后成果的利用率。
新课程实施以来,课堂教学发生了许多的变化:教师的讲解少了,学生的活动多了;课堂气氛活跃了,学生动手的机会多了;课堂不再是教师个人的舞台,学生成为了主角。而操作活动正是在这种背景下在课堂里生机勃勃起来。这些操作活动,有多少是内容,有多少是形式,它的有效性如何呢?如何利用好操作的成果呢?
我们知道,语言是思维的外壳。人们借助语言把获得的感觉、知觉、表象加以概括,形成概念、判断,进行推理;通过语言表达来调节、整理自己的思维活动,使之逐步完善。因此,为了促进操作和思维,必须充分地让学生描述操作的过程和结果、表达自己的想法和认识。同时,教师为了了解学生的思维活动情况,也需要让学生用语言表达。 我们可以把点名发言、小组交流和同桌两人对讲等不同方式结合起来,使学生都有口头表达的机会。通过倾听学生的表达,发现学生操作、思维过程中的闪光点与存在问题,给予肯定或纠正。同时,注意组织学生认真听取同学的叙述,参与评价其操作、思维过程正确、合理与否。在这一过程中要有意识地鼓励、帮助学习有困难的学生发言,促进和推动他们积极思维,逐步提高语言表达能力。
总之,教学中,能够让学生进行实验操作的内容有很多,教者要设计好方案,把握好时机,尽量让学生的多种感官参与学习活动,这对提高学生学习兴趣,培养学生的学习能力、实践能力和创新精神是有百利而无一弊的。
下一篇:浅析小学数学生活化教学的探索