您当前所在位置:

数学教学中培养学生创造性思维能力的探索

2013-04-08

教师在课堂教学中,对学生的直觉猜想不要随便扼杀,而应正确引导,鼓励学生大胆说出由直觉得出的结论。

例如,有一位老师上了一堂公开课。他刚在黑板上写上下面的题目:平面上有两个点(t+,t-)(t>0)与(1,0),当这两点距离最短时,t=____ 。有一位同学小声说道:t=1,老师问他为什么?那位学生只是吞吞吐吐,词不达意,说不出所以然。那位老师让他坐下,并批评了他。实际上,那位学生凭的是直觉,首先直觉到:距离最短→t+有最小值→t=1。这时老师应该引导学生去仔细推敲,找出理论依据。其实“追踪还原”出事物本来面目,便可解释为:如图所示,因为t+≥2,所以动点P(t+,t-)位于直线x=2的右则,(含直线x=2本身),t=1时,对应点P′的坐标为(2,0),恰好是Q(1,0)在直线x=2上的射影,P′Q的长即为直线x=2的右半面上所有点到点Q的距离的最小值。

同时,还可以从深一层意义“还原”下去:设动点为(t+,t-),将方程x=t+,y=t-两边平方后相减,可得方程x2-y2=4(x≥2),故点Q与双曲线的右项点P’(2,0)距离最小,所以│PQ│min=2-1=1,这时,t+=2,t-=0,即t=1。

如果这样讲,不仅保护和鼓励了学生的直觉思维的积极性,还可以激活课堂气氛。

由此可见,直觉思维以已有的知识和经验为基础的,因此,在教学中要抓好“三基”教学,同时要保护学生在教学过程中反映出来的直觉思维,鼓励学生大胆猜想发现结论,为杜绝可能出现的错误,应“还原”直觉思维的过程,从理论上给予证明,使学生的逻辑思维能力得以训练,从而培养学生的创造机智。

三、培养发散思维,提高创造思维能力

任何一个富有创造性活动的全过程,要经过集中、发散、再集中、再发散多次循环才能完成,在数学教学中忽视任何一种思维能力的培养都是错误的。

发散思维是一种不依常规、寻求变异、多方面寻求答案的一种思维方式,是创造性思维的核心。发散思维富于联想,思路宽阔,善于分解组合和引申推广,善于采用各种变通方法。发散思维具有三个特征:流畅性、变通性和独创性。

加强对学生发散思维的培养,对造就一代开拓型人才具有十分重要的意义。在数学教学中可通过典型例题的解题教学及解题训练,尤其是一题多解、一题多变、一题多用及多题归一等变式训练,达到使学生巩固与深化所学知识,提高解题技巧及分析问题、解决问题的能力,增强思维的灵活性、变通性和独创性的目的。

一题多解,培养学生求异创新的发散思维,实现和提高思维的流畅性。通过一题多解的训练,学生可以从多角度、多途径寻求解决问题的方法,开拓解题思路。使不同的知识得以综合运用,并能从多种解法的对比中优选最佳解法,总结解题规律,使分析问题、解决问题的能力提高,使思维的发散性和创造性增强。

一题多变,培养学生的转向机智及思维的应变性,实现提高发散思维的变通性。把习题通过变换条件,变换结论,变换命题等,使之变为更有价值,有新意的新问题,从而应用更多的知识来解决问题,获得“一题多练”“一题多得”的效果。使学生的思维能力随问题的不断变换,不断解决而得到不断提高,有效地增强思维的敏捷性和应变性,使创造性思维得到培养和发展。

多题归一,培养学生的思维收敛性。任何一个创造过程,都是发散思维和收敛思维的优秀结合。因此,收敛性思维是创造性思维的重要组成部分,加强对学生收敛性思维能力的培养是非常必要的,而多题归一的训练,则是培养收敛性思维的重要途径。很多数学习题,虽然题型各异,研究对象不同,但问题的实质相同,若能对这些“型异质同”或“型近质同”的问题归类分析,抓共同的本质特征,掌握解答此类问题的规律,就能弄通一题而旁通一批,达到举一反三、事半功倍的教学效果,从而摆脱“题海”的束缚。

总之,在数学教学中,教师的作用应尽力体现在思维情境的创设、启发性问题的提出、学生创造性思维兴奋点的捕捉等方面。通过导趣、导思、导法,使学生多动、多猜想、多发现、多“创造”,用教师的创造性劳动,培养出一代具有创造精神的学生。

参才文献:

《数学教育学》 田万海 浙江教育出版社 1993年6月第1版

《数学教育学》 张奠宙、唐瑞芬、刘鸿坤 江西教育出版社 1991年11月第1版

《中学数学》 例说创造性思维能力的培养 任明中 99年第8期

《中学数学》 课堂教学中如何激发学生的积极思维 朱平 95年第3期

更多精彩内容请点击:精品学习网 > 论文 > 自然科学 > 数学