精品学习网
所在位置:主页 > 电子工程 > 太阳能光伏用电量(太阳能光伏发电利用率)

太阳能光伏用电量(太阳能光伏发电利用率)

发布时间:2022-11-22 12:00来源:www.51edu.com作者:畅畅

太阳能光伏发电利用率

光伏电站系统发电总效率=所有系统产品的效率的乘积,一般光伏项目的发电效率在70~80%左右。

影响其发电效率的主要因素包括:

1) 光伏温度因子:光伏电池的效率会随着其工作时的温度变化而变化。当它们的温度升高时,晶体硅光伏电池效率呈现降低的趋势。本项目所在地区多年极端最高气温为52.9℃,极端最高气温40.2℃,极端最低气温-12.1℃ 。全年平均气温15.9°C,计算得到当地的温度折减为2.5%。

2) 组件匹配损失:组件串联因为电流不一致产生的效率降低,根据电池板出厂的标称偏差值,对于精心设计、精心施工的系统,约有3%的损失。为保证电池发电效率,将定期、及时对组件进行清洗,但组件上的灰尘或积雪造成的污染仍会对发电量造成影响,此项造成的年系统效率折减取3.2%。当辐照度过低时,会产生不可利用的低、弱太阳辐射损失。

3) 直流线路损失:光伏组件产生电量输送至汇流箱、直流配电柜、逆变器时,存在直流电路的线损,按3%记取;

4) 电气设备造成的效率损失:逆变器转换过程中也存在电量损失,此项折减取2.5%。箱式变压器的升压过程中,也会存在能量损失。

5) 光伏电站内线损等能量损失:电能由逆变器输出至箱变,再送至开关站,交流线路会存在线损。

6) 系统的可利用率:虽然光伏组件的故障率极低,但定期检修及电网故障仍会造成损,按2%记取。

考虑以上各种因素,通过计算分析光伏电站系统发电总效率:

η=97.5%×96.8%×94.5%×97.2%×97%×97.5%×97.3%×=79.7%

太阳能发电的利用率

单晶硅太阳能的光电转换效率最高的达到24%,这是目前所有种类的太阳能电池中光电转换效率最高的。但是单晶硅太阳能电池的制作成本很大,以致于它还不能被大量广泛和普遍地使用。多晶硅太阳能电池从制作成本上来讲,比单晶硅太阳能电池要便宜一些,但是多晶硅太阳能电池的光电转换效率则要降低不少,此外,多晶硅太阳能电池的使用寿命也要比单晶硅太阳能电池短。因此,从性能价格比来讲,单晶硅太阳能电池还略好。近十年来,研究者发现有一些化合物半导体材料适于作太阳能光电转化薄膜。例如CdS,CdTe;Ⅲ-V化合物半导体:GaAs,AIPInP等;用这些半导体制作的薄膜太阳能电池表现出很好光电转化效率。具有梯度能带间隙(导带与价带之间的能级差)多元的半导体材料,可以扩大太阳能吸收光谱范围,进而提高光电转化效率。使薄膜太阳能电池大量实际的应用呈现广阔的前景。在这些多元的半导体材料中Cu(In,Ga)Se2是一种性能优良太阳光吸收材料。以它为基础可以设计出光电转换效率比硅薄膜太阳能电池明显地高的薄膜太阳能电池,可以达到的光电转化率为18%.

太阳能光伏发电能力

成为合格的光伏系统工程师需要具备以下知识:

1.大专以上学历,能源、光伏、电力工程、机电一体化等相关理工科专业;

2.具有太阳能光伏发电的基础,能够根据光照强度、时间、负载功率等参数进行电能计算,确定太阳能电池板的大小,逆变器、蓄电池的配置等,

能够设计整体方案;

3.熟练操作相关光伏系统设计软件、Google

sketchup、PV

syst、Auto

CAD等;

4.英语具有良好的听、读、写、说的能力。

太阳能光伏效率

直接利用太阳能发热效率更高。因为太阳能光伏发电,先是通过光电转换器将太阳能转化成电能,这些电能又要转化为化学能储存在蓄电池中,然后由蓄电池对电加热器供电,将化学能转化为热能,由于在上叙能的转化为过程中效率不的是100%,所以这种形式的效率没有直接利用的高。

太阳能光伏发电占比

光伏装机容量的单位是W、MW、GW,但是由于光伏组件的出力受当地环境条件影响较大,如辐射度,温度,阴影遮挡等,因此很难确定不同时刻的输出功率大小。所以通用Wp来作为光伏组件的标称功率。

一、光伏简介:

1. 定义:光伏是太阳能光伏发电系统的简称。是一种利用太阳电池半导体材料的光伏效应,

将太阳光辐射能直接转换为电能的一种新型发电系统,有独立运行和并网运行两种方式。

2.简单的光伏电池可为手表及计算机提供能光伏的优点:清洁环保,可再生能源 ,较复杂的光伏系统可为房屋提供照明,并为电网供电。近年,天台及建筑物表面均会使用光伏板组件,甚至被用作窗户、天窗或遮蔽装置的一部分,这些光伏设施通常被称为附设于建筑物的光伏系统。

二、国内光伏发展现状

1. 产业规模不断扩大

2011年全球光伏产业的产量依然达到了23.8GW,我国光伏产量达到了11GW,均依然保持了近40%的年增速~虽然,与2010年140%的年增速相比,已经下降了不少,但是,这从侧面也说明了光伏产业的抗跌能力。

在2009年全球太阳电池产量10.7GWp中,我国为5.2GWp,占世界产量的48.7,;2010年全球太阳电池产量15.8GWp,中国光伏太阳能电池产量更是达到8GWp,占世界生产总量的50%;2011年全球太阳电池产量23GW,而我国光伏组件产量达到11GW,在全球光伏市场低迷、欧债危机和美国“双反”的不利国际环境下,依然占据了近50%的份额,且取得了37%的年增幅。

光伏太阳能发电量

光伏发电1千瓦,在年日照1800小时的地区,一年能发1400多度电的样子。现在的市场价格8-10元/千瓦时,1千瓦需要花费1万元左右。光伏发电:光伏发电是利用半导体界面的光生伏特效应而将光能直接转变为电能的一种技术。主要由太阳电池板(组件)、控制器和逆变器三大部分组成,主要部件由电子元器件构成。太阳能电池经过串联后进行封装保护可形成大面积的太阳电池组件,再配合上功率控制器等部件就形成了光伏发电装置。

太阳能光伏发电利用率大约为多少?

“我会把钱放在太阳能和太阳能上。多么强大的力量来源啊!我希望我们不必等到石油和煤炭耗尽后,我们才能解决这个问题。”-托马斯·爱迪生(Thomas Edison)

现在,全世界每个人都应该同意,就满足人类对能源的需求而言,可再生能源是前进的唯一途径。 但是,谈到各种更环保的电源替代方案时,每个方案确实都有其自身的局限性。

风能的风速波动很大,在一天中的大部分时间内都不可靠;可以建造水坝发电,但对生态环保有很多影响;阳光是免费的,而且非常环保,难道太阳能发电就没有局限性了嘛?更其他再生能源一样,太阳能发电也有其局限性,迄今为止记录到的市售太阳能电池的最大效率为33.7%。这一直是太阳能行业面临的最大挑战之一,但是为什么太阳能电池板的效率如此低呢? 我们很快就会得到答案,但是首先,了解太阳能电池到底是什么很重要。

什么是太阳能电池?

太阳能电池是一种以直射阳光的形式捕获太阳能量并将其转换为电能的设备。太阳能电池也称为光伏电池,这意味着它将存在于光中的光子转换为电压差(这实际上是指“电能”)。 要了解太阳能电池的局限性,我们必须仔细研究其构造。

图注:简单的P-n节插图;

太阳能电池是使用p型和n型硅晶圆制成的。p型硅晶片由更多的孔组成,这意味着它缺少电子,而n型晶片具有过量的电子。两者接触的界面称为结(更准确地说是PN结)。PN结是太阳能电池的主要组成部分。

我们所说的太阳能电池效率是什么意思?

我们使用的每个设备都具有一定的效率。 考虑一台每小时可生产10个气球的机器。在这十个气球中,有两个气球有孔或其他类型的缺陷。这意味着该机器的效率为80%,因为该机器吸收了生产10个气球所需的原材料,但仅将其中的80%转换为有用的输出。因此,设备的效率代表了提供给它的每单位输入所产生的有用输出量。

图注:所有的能量产生机制都有一定的效率极限。

类似地,太阳能电池上的入射辐射不会完全转换为电能。只能获取该能量的一小部分(如我们已经看到的小得多)作为有用的工作。有许多不同的衡量太阳能电池效率的方法,但最普遍的方法是肖克利-奎塞尔极限。

什么是肖克利-奎塞尔极限?

肖克利-奎塞尔极限(通常称为SQ极限)是提高太阳能电池效率的最重要科学手段。 它测量标准测试条件(STC)下单个PN结太阳能电池的理论效率。STC近似于美国大陆春季和秋季春分时的太阳正午,太阳能电池的表面直接对准太阳(太阳能效率极限)。

该限制是在某些假设下测得的,太阳能电池必须仅由一种均质材料制成,每个太阳能电池只能有一个p-n结,并且假定每个能量大于带隙的光子都将转换为电能。如果您不了解光子或带隙的含义,请不要担心,我们将在下面进行讨论。

为什么效率受到限制?

使用太阳能电池发电的过程主要取决于一个非常重要的步骤。电子从价带(太阳能电池的PN结)跃迁到导带(外部电路,例如电池)。 供您参考,正常原子中没有外部能量的电子被称为在价带中。为了产生电,这些电子必须转移到外部电路,这被称为导带。

图注:不同材料间的能带隙。

电子本身不会从价带跃迁到导带。 必须提供一定量的能量(称为带隙),以使它们进行过渡。

现在,入射的太阳辐射由许多不同波长的波组成,如上面的光谱所示。左侧的长波最弱(能量较少),而右侧的短波更强大。因此,这些波中只有少数具有必要的能量来克服能垒。

图注:光波带谱。

让我们看一个例子,以更好地了解上述过程。考虑一包由100个不同波长的光子组成的光子(光子)撞击由硅制成的太阳能电池。在这100个波中,有40个波具有相当于硅带隙的能量,因此将能够发电。其余的波将作为热量消散或从电池表面反射回来。因此,太阳能电池的效率受到限制。

还有其他影响效率的因素吗?

正如我们所看到的,电子跃迁的阈值能垒原来是太阳能电池板效率低的主要原因。但是,它不是影响它的唯一因素。还有许多其他元素在这里起着相当重要的作用。

图注:臭氧层阻止高能紫外线到达地表。

离开太阳的能量与我们在地球上接收到的能量不同。这是因为辐射必须穿过包围我们星球的浓厚大气传播。现在,诸如光的散射和折射之类的不同现象降低了其强度。臭氧层会阻止有害的紫外线辐射到达我们(这些波对我们有害,因为它们拥有更多的能量,因此会损坏我们的眼睛细胞)。 然而,这些是能够越过阈值能量的波,但却稀疏地到达表面,从而再次导致太阳能电池板的效率降低。

有什么解决办法吗?

即使目前我们可以买到的大多数商用太阳能电池的转换率都无法超过33%的标准,但未来的前景似乎一片光明。剑桥大学致力于钙钛矿材料用于柔性LED和下一代太阳能电池的研究人员发现,当它们的化学成分顺序较少(从本文范围外的东西)时,它们的效率会更高,从而大大简化了生产生产过程,并且 降低成本。

同样,世界各地的科学家一直在研究更新的材料,例如氮化镓,锗,磷化铟等。许多人认为,这些材料将通过改变多结太阳能电池的带隙极限,有效地利用整个太阳光谱将其转化为电能。总而言之,太阳能行业的未来确实是光明的。

总结

澳大利亚和亚马逊的森林大火已经向大气释放了惊人数量的碳,以至于我们的星球可能要到2050年才能吸收它。这已成为了现实,否认它是没有用的。环保主义者已经竭尽全力告诉世界绿色能源是前进的唯一途径,但一些领导人仍然对事实持怀疑态度。

图注:澳大利亚山火。

人们普遍认为太阳能电池效率较低是不将其用作化石燃料替代品的原因。但是,问题在于跨国公司和政府继续在石油和煤基能源生产的研究和开发中投入大量资金,而忽略了对绿色和安全替代品的研究和改进。例如,已经发现具有较低能带隙的材料可以作为解决当前问题的可能方法,但是我们需要全世界关注和投资于此类研究!

世界需要理解和接受的是,如果我们希望我们的物种得以生存,则只有一条前进的道路可走——绿色和可持续的道路!

太阳能光伏发电的发展趋势

投资十万元建10kW光伏电站,平均每天发电50度左右,每月发电1500度,每年发电18000度,按政府补贴每度电1元,一年收入18000元左右

投资十万可见十二千瓦左右的电站,一般六七年回收投资成本,到六七年之后才会纯赚钱的,每年发的电给国家电网挣国家补贴,每年约赚15000元左右,电站的寿命可到25年

太阳能光伏发电 效率

光伏电站系统发电总效率=所有系统产品的效率的乘积,一般光伏项目的发电效率在70~80%左右。

影响其发电效率的主要因素包括:

1) 光伏温度因子:光伏电池的效率会随着其工作时的温度变化而变化。当它们的温度升高时,晶体硅光伏电池效率呈现降低的趋势。本项目所在地区多年极端最高气温为52.9℃,极端最高气温40.2℃,极端最低气温-12.1℃ 。全年平均气温15.9°C,计算得到当地的温度折减为2.5%。

2) 组件匹配损失:组件串联因为电流不一致产生的效率降低,根据电池板出厂的标称偏差值,对于精心设计、精心施工的系统,约有3%的损失。为保证电池发电效率,将定期、及时对组件进行清洗,但组件上的灰尘或积雪造成的污染仍会对发电量造成影响,此项造成的年系统效率折减取3.2%。当辐照度过低时,会产生不可利用的低、弱太阳辐射损失。

3) 直流线路损失:光伏组件产生电量输送至汇流箱、直流配电柜、逆变器时,存在直流电路的线损,按3%记取;

4) 电气设备造成的效率损失:逆变器转换过程中也存在电量损失,此项折减取2.5%。箱式变压器的升压过程中,也会存在能量损失。

5) 光伏电站内线损等能量损失:电能由逆变器输出至箱变,再送至开关站,交流线路会存在线损。

6) 系统的可利用率:虽然光伏组件的故障率极低,但定期检修及电网故障仍会造成损,按2%记取。

考虑以上各种因素,通过计算分析光伏电站系统发电总效率:

η=97.5%×96.8%×94.5%×97.2%×97%×97.5%×97.3%×=79.7%

太阳能光伏发电利用率大约为

2738亿千瓦时

2021年1-10月我国光伏发电新增装机29.31GW,同比增长34%,其中分布式装机19.03GW,占比64.9%;光伏发电量2738亿千瓦时,同比增长22.8%,占总发电量的4%,同比增加0.3个百分点,光伏发电平均利用率98%;户用光伏新增装机13.6GW,其中10月份户用装机占光伏总装机51.5%,占比首次突破半数,分布式光伏迎来规模化发展的市场空间。

太阳能光伏发电发电量

光伏每天发一度电最少也要配0.2kw组件来发电,1KW组件有效日照6小时,不考虑损耗1天发电6度电。独立系统的损耗一般在30%。考虑太阳辐射强度,6小时有效日照,6*0.7=4.2kw/h。一天发电4.2度电所谓有效日照小时数指的就是辐射强度 。太阳能日发电量=日光照时间*光伏阵列总功率*发电效率。光伏发电的主要原理是半导体的光电效应。光子照射到金属上时,它的能量可以被金属中某个电子全部吸收,电子吸收的能量足够大,能克服金属内部引力做功,离开金属表面逃逸出来,成为光电子。

  • 热门资讯
  • 最新资讯
  • 手游排行榜
  • 手游新品榜