您当前所在位置:首页 > 小升初 > 小升初奥数

小升初奥数试题及答案5

编辑:

2011-06-12

【二年级】

1.769+52-169+48

解答:原式=(769-169)+(52+48)

=600+100

=700

2.要把一张面值1角的人民币换成零钱,现在有足够的5分、2分、1分的硬币,问:有多少种不同的换法?

解答:

1.只换成一种硬币的换法:

5+5=10;2+2+2+2+2=10;1+1+1+1+1+1+1+1+1+1=10。

2.换成两种不同硬币的换法:

5+1+1+1+1+1=10;2+2+2+2+1+1=10;2+2+2+1+1+1+1=10;2+2+1+1+1+1+1+1=10;2+1+1+1+1+1+1+1+1=10。

3. 换成三种不同的硬币的换法:

5+2+2+1=10;5+2+1+1+1=10。

所以一共有3+5+2=10种换法。

【三年级】

1.小明用围棋子摆了一个5层的中空方阵,一共用了200枚棋子,问最外层每边有多少枚棋子?

解答:200÷4÷5+5=15(枚)

2.甲到商店买了一盒红笔芯和一盒蓝笔芯,两盒内的笔芯数量相等,每盒单价都是整数元。红笔芯原价1元钱2支,蓝笔芯原价1元钱3支。因商店临时调价销售,两种笔芯的售价都是2元钱5支,结果小明比原来少花了4元钱,那么小明共买了多少个笔芯?

解答:因为红笔芯和蓝笔每盒单价都是整数元,而且调价后花的钱比原来少4元钱,还是整数元,说明每盒的笔芯数量必为2,3,5的倍数。选择每盒数量为30 支时,红蓝各买1盒时,可比原来省下=(30÷2+30÷3)-(30÷5×2)×2=1元,要一共省下4元,红笔芯和蓝笔芯各买30×4=120支。共买了120×2=240(支)。

【四年级】

1.12345×2345+2469×38275

解答:原式=12345×2345+2469×5×7655

=12345×(2345+7655)

=123450000

2.A=888123×888456 ,B=888234×888345;A与B比较,哪个数大?较大的数比较小的数大多少 ?

解答:由于888123+888456=888234+888345,

而888456-888123=333,

888345-888234=111,

333>111,

所以A

A=888123×888456

=888123×(888345+111)

=888123×888345+888123×111;

B=888234×888345

=(888123+111)×888345

=888123×888345+888345×111;

所以B-A=888345×111-888123×111

=(888345-888123)×111

=222×111

=24642

【五年级】

1.对任意两个不同的自然数,将其中较大的数换成这两数之差,称为一次变换。如对18和42可进行这样的连续变换:

18,42→18,24→18,6→12,6→6,6

直到两数相同为止。问:对12345和54321进行这样的连续变换,最后得到的两个相同的数是几?为什么?

解答:如果两个数的最大公约数是a,那么这两个数之差与这两个数中的任何一个数的最大公约数也是a。因此在每次变换的过程中,所得两数的最大公约数始终不变,所以最后得到的两个相同的数就是它们的最大公约数。因为12345和54321的最大约数是3,所以最后得到的两个相同的数是3。

说明 这个变换的过程实际上就是求两数最大公约数的辗转相除法。

2.有甲乙丙三个人,当甲的年龄是乙的2倍时;丙是22岁,当乙的年龄是丙的2倍,甲是31岁;当甲60岁时,丙是多少岁?

解答:设丙22岁时,乙的年龄是x岁,当时甲的年龄就是2x岁.那么甲是3l岁时,乙是(31-x)岁,丙是22+(31-2x)=53-2x岁,且有:31-x=2×(53-2x),解得x=25,所以乙25岁时,甲50岁,丙22岁.那么甲60岁时,丙32岁.

利用方程解年龄问题.设定乙的年龄之后,我们可以把各个时期甲、乙、丙的年龄都用含有x的式子表达出来,继而很方便地建立等量关系.

标签:小升初奥数

免责声明

精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。