您当前所在位置:首页 > 小升初 > 小升初奥数

五年级学生如何学好奥数

编辑:

2012-11-06

任何事物的发展总是从简单到复杂,奥数也是一样,对于复杂问题,我们不妨先从最简单的情况入手,通过处理简单的问题,我们可以从中得到规律或者诀窍,从而来解决复杂的问题,这就是递推方法。比如说:平面上2008条直线最多有几个交点? 同学们第一眼看到这个问题时,肯定会想画2008条直线相交然后再数交点个数,那该是多麻烦啊! 其实我们可以先来解决简单点的情况,分别找到1条、2条、3条、4条……这些直线有多少个交点。

1条直线最多有0个交点 0

2条直线最多有1个交点 1

3条直线最多有3个交点 1+2=3

4条直线最多有6个交点 1+2+3=6

5条直线最多有10个交点 1+2+3+4=10

6条直线最多有15个交点 1+2+3+4+5=15

……

所以2008条直线有1+2+3+4+5+…+2007=2015028个交点。

那么聪明的你,你能算出2008条直线最多可以把圆分成几部分么?

2.变化无穷、形迹不定的行程问题。

提到行程问题,同学们可能就感到头疼,的确不错,因为行程问题中各个物体的速度、时间、路程都在变化,而且各个物体都是在运动中,位置是随着时间在变化,所以分析起来就很麻烦,为了更好的解决这个问题,我们把行程问题进行了细分:基本行程(单个物体)、平均速度、相遇、追及、流水行船、火车过桥、火车错车、钟表问题、环形线路上行程。只要我们掌握这些每个小类型中的诀窍,形成一种分析思路,复杂的行程问题无非是这些类型的变形而已,解决起来就容易多了。

3.抽象而又杂乱的数论问题。

数论是从五年级的核心知识,无论是在哪本教材里,都用了很多的章节来讲解数论,要想解决复杂的数论问题,我们首先得掌握数论的基本知识:数的奇偶性、约数(现在叫因数)、倍数、公约数及最大公约数、公倍数及最小公倍数、质数、合数、分解质因数、整除、余数及同余等。这些基本知识点里又有些非常有代表性的例题,只要能掌握好这些知识点,然后做一定量的数论综合习题,碰到难的数论问题我们就容易解决了。

4.有趣的抽屉原理。

生活中有很多有趣的事情,比如说:把4个苹果放到3个抽屉里,无论你怎么放,总有某个抽屉里至少有2个苹果,这就是抽屉原理。

对于抽屉原理我们只要找到苹果的个数a与抽屉的个数b,我们就可以得到下面的结论:

若 a÷b=r……q

当q=0时,我们就说总有某个抽屉里至少有r个苹果;

当q 0时,我们就说总有某个抽屉里至少有(r+1)个苹果。

比如说把32个苹果放进8个抽屉里,因为32÷8=4,无论怎么放,总有某个抽屉里有4个苹果。如果把35个苹果放进8个抽屉里,因为35÷8=4……3,无论怎么放,总有某个抽屉里有4+1=5个苹果。

但是大部分的奥数题是没有告诉我们抽屉的个数的,那样我们就得自己构造抽屉,从而找出抽屉的个数。

5.图形面积计算。

求图形的面积也是奥数中的一个难点,对于这类题我们首先要掌握好各种基本图形的面积计算公式,然后记住一些重要的结论:比如说三角形的等积变形、直角三角形中30度所对的边是斜边的一半、勾股定理、梯形中蝴蝶翅膀原理、相似三角形中边与面积的关系。在计算面积时的方法有:直接计算法、割补法、方程法等。在图形面积计算中,难题往往得添加辅助线,这个就是难点所在,因为添加辅助线非常灵活,这就要我们多做些这方面的题,多积累一些添加辅助线的技巧,做到心中有数。

标签:小升初奥数

免责声明

精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。