您当前所在位置:首页 > 小升初 > 小升初奥数

解决奥数难题的基本技巧

编辑:

2012-11-26

5.在(点)三染色的平面上,必有相距为1的两点同色;

6.在(点)三染色的平面上,必存在一个斜边为1的直角三角形,它的三个顶点是全同色的或是全不同色的;

7.在(边)染色的六阶完全图中必有单三角形(三边同色);

8.在(边)染色的六阶完全图中至少有两个单色三角形。

六、极端的技巧:

某些数学问题中所出现的各个元素的地位是不平衡的,其中的某个极端元素或某个元素的极端状态往往具有优先于其它元素的特殊性质,而这又恰好为解题提供了突破口,从极端元素入手,进而简捷地解决问题,这就是通常所说的“极端原理”。

七、对称的技巧:

对称性分析就是将数学的对称美与题目的条件或结论相结合,再凭借知识经验与审美直觉,从而确定解题的总体思想或入手方向。其实质是美的启示、没的追求在解题过程中成为一股宏观指导的力量。著名物理学家杨振宁曾高度评价对称性方法:“当我们默默考虑一下这中间所包含的数学推理的优美性和它的美丽完整性,并以此对比它的复杂的、深入的物理成果,我们就不能不深深感到对对称定律的力量的钦佩”。

八、配对的技巧:

配对的形式是多样的,有数字的凑整配对或共轭配对,有解析式的对称配对对或整体配对,有子集与其补集的配对,也有集合间象与原象的配对。凡此种种,都体现了数学和谐美的追求与力量,小高斯求和(1+2+…+99+100)首创了配对。

九、特殊化的技巧:

特殊化体现了以退求进的思想:从一般退到特殊,从复杂退到简单,从抽象退到具体,从整体退到部分,从较强的结论退到较弱的结论,从高维退到低维,退到保持特征的最简单情况、退到最小独立完全系的情况,先解决特殊性,再归纳、联想、发现一般性。华罗庚先生说,解题时先足够地退到我们最易看清楚问题的地方,认透了、钻深了,然后再上去。特殊化既是寻找解题方法的方法,又是直接解题的一种方法。

十、一般化的技巧:

推进到一般,就是把维数较低或抽象程度较弱的有关问题转化为维数较高、抽象程度较强的问题,通过整体性质或本质关系的考虑,而使问题获得解决,离散的问题可以一般化用连续手段处理,有限的问题可以一般化用数学归纳法处理,由于特殊情况往往涉及一些无关宏旨的细节而掩盖了问题的关键,一般情况则更明确地表达了问题的本质。波利亚说:“这看起来矛盾,但当从一个问题过渡到另一个,我们常常看到,新的雄心大的问题比原问题更容易掌握,较多的问题可能比只有一个问题更容易回答,较复杂的定理可能更容易证明,较普遍的问题可能更容易解决。”希尔伯特还说:在解决一个数学问题时,如果我们没有获得成功,原因常常在于我们没有认识到更一般的观点,即眼下要解决的只不够是一连串有关问题的一个环节。

十一、数字化的技巧:

数字化的好处是:将实际问题转化为数学问题的同时,还将抽象的推理转化为具体的计算。

十二、有序化的技巧:

当题目出现多参数、多元素(数、字母、点、角、线段等)时,若按一定的规则(如数的大小,点的次序等),将其重新排列,则排序本身就给题目增加了一个已知条件(有效增设),从而大大降低问题的难度。特别是处理不等关系时,这是一种行之有效的技巧。

十三、不变量的技巧:

在一个变化的数学过程中常常有个别的不变元素或特殊的不变状态,表现出相对稳定的较好性质,选择这些不变性作为解题的突破口是一个好主意。

更多内容请进入:

精品学习网小升初频道

标签:小升初奥数

免责声明

精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。