您当前所在位置:首页 > 小升初 > 小升初奥数

小升初奥数行程:流水行船问题

编辑:

2016-10-25

四:流水行船问题练习题及解析

1、流水行船求船速

江上有甲、乙两码头,相距15千米,甲码头在乙码头的上游,一艘货船和一艘游船同时从甲码头和乙码头出发向下游行驶,5小时后货船追上游船。又行驶了1小时,货船上有一物品落入江中(该物品可以浮在水面上),6分钟后货船上的人发现了,便掉转船头去找,找到时恰好又和游船相遇。则游船在静水中的速度为每小时多少千米?

【解】:此题可以分为几个阶段来考虑。第一个阶段是一个追及问题。在货舱追上游船的过程中,两者的追及距离是15千米,共用了5小时,故两者的速度差是15÷5=3千米。由于两者都是顺水航行,故在静水中两者的速度差也是3千米。在紧接着的1个小时中,货船开始领先游船,两者最后相距3*1=3千米。这时货船上的东西落入水中,6分钟后货船上的人才发现。此时货船离落在水中的东西的距离已经是货船的静水速度*1/10千米,从此时算起,到货船和落入水中的物体相遇,又是一个相遇问题,两者的速度之和刚好等于货船的静水速度,所以这段时间是货船的静水速度*1/10÷货船的静水速度=1/10小时。按题意,此时也刚好遇上追上来的游船。货船开始回追物体时,货船和游船刚好相距3+3*1/10=33/10千米,两者到相遇共用了1/10小时,帮两者的速度和是每小时33/10÷1/10=33千米,这与它们两在静水中的速度和相等。(解释一下)又已知在静水中货船比游船每小时快3千米,故游船的速度为每小时(33-3)÷2=15千米。

2、流水问题

一船逆水而上,船上某人于大桥下面将水壶遗失被水冲走,当船回头时,时间已过20分钟。后来在大桥下游距离大桥2千米处追到了水壶。那么该河流速是每小时多少千米?

解析:

船回头时,水壶和船之间的距离相当于,船逆水20分钟+水壶行20分钟(水流20分钟)=船静水20分钟的路程。

追及时,船追及水壶的速度差相当于,船顺水速度-水壶的速度(水流速度)=船静水速度

因此追上水壶的时间是20分钟。即水壶20×2=40分钟,被冲走了2千米。

因此水流的速度是每小时2÷40/60=3千米

3、流水行船求时间

某河有相距45千米的上下两港,每天定时有甲乙两船速相同的客轮分别从两港同时出发相向而行,这天甲船从上港出发掉下一物,此物浮于水面顺水漂下,4分钟后与甲船相距1千米,预计乙船出发后几小时可与此物相遇。

【解】:物体漂流的速度与水流速度相同,所以甲船与物体的速度差即为甲船本身的船速(水速作用抵消),甲的船速为1÷1/15=15千米/小时;乙船与物体是个相遇问题,速度和正好为乙本身的船速,所以相遇时间为:45÷15=3小时

【拓展】甲轮船和自漂水流测试仪同时从上游的A站顺水向下游的B站驶去,与此同时乙轮船自B站出发逆水向A站驶来。7.2时后乙轮船与自漂水流测试仪相遇。已知甲轮船与自漂水流测试仪2.5时后相距31.25千米,甲、乙两船航速相等,求A,B两站的距离。

【解】:因为测试仪的漂流速度与水流速度相同,所以若水不流动,则7.2时后乙船到达A站,2.5时后甲船距A站31.25千米。由此求出甲、乙船的航速为31.25÷2.5=12.5(千米/时)。A,B两站相距12.5×7.2=90(千米)。

这就是精品学习网为大家分享的流水行船问题,希望小朋友们勤加练习,跟上小编的步伐让你的数学成绩更上一层楼。

相关推荐

小升初奥数数论问题复习资料整理 

小升初奥数数论整数拆分要点(含解题技巧)

标签:小升初奥数

免责声明

精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。