编辑:
2014-05-26
1.若a÷c=……r;b÷c=……r.则cㄏ(a-b)。
例1.一个数去除551,745,1133这3个数,余数都相同。问这个数最大可能是几?
解:745-551=194,1133-745=388。(194,388)=194,所以这个数最大是194。
2.若a÷c=……r1;b÷c=……r2, r1+ r2=d.则cㄏ(a+b-d)。
例2.有一个整数,用它分别去除157,234和324,得到的三个余数之和是100。求这个整数?
解:157+324+234-100=615,615=3×5×41。100÷3=33……1,即最小的除数应大于34,小于157。所以满足条件的有41、123两个,经过验算可知正确答案为41。
三、求余数类
例1.已知整数n除以42余12,求n除余21的余数?
解:由已知条件可知,n=42的倍数+12=21的2倍的倍数+12。所以,n除以21的余数为12。
例2.有一个整数,除1200,1314,1048所得的余数都相同且大于5。问:这个相同的余数是多少?
解:因为
1314-1200=114=3×38,
1200-1048=152=4×38。
某自然数应当是这两个差的公约数,即38。又因为
1200÷38=31(余22)
1314÷38=34(余22)。
所以,这个相同的余数是22。
例3.求19901990除以3所得的余数?
解:由同余的性质可知:对于同一个模,同余的乘方仍同余。
因为,
1990被3除余1,即19901990≡11990≡1,
所以19901990除以3所得的余数为1。
标签:小升初数学知识点
精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。