小升初数学逻辑推理题技巧

编辑:

2014-06-01

反向思考是解决逻辑推理问题的一种特殊方法。任何一个问题都有正反两个方面。所谓正难则反,很多时候,从正面解决问题相当困难,这时如果从其反面去想一想,常常会茅塞顿开,获得意外的成功。这就是反向思考。

在进行逻辑推理时,有时已知的条件很多,能够运用的逻辑关系也很复杂,要从众多的可能性中寻找所需要的结果,往往是非常困难的。这时,我们可以运用反向思考方法,从结果出发,排除掉一些不可能的情况,使剩下的情况减少,便于我们最后的分析。如果情况减少到一定程度,我们甚至可以用穷举的方法,依次考察所有情况,从而找到问题的答案。

第5大技巧 图表分析

在逻辑思考过程中有这样一些问题,所涉及或所列出的事物情况比较多,而且又具有一定的表列特征,这时候如果我们把它转化成一个直观易读的图形或者表格,就会非常容易地迅速寻找到答案。图表会给我们指出一些逻辑关系链,它们限制了选择的可能性,使得我们需要考虑的情况得到极大的简化。假如不利用图表的帮助,单凭想像,则往往容易产生混乱,难于理清头绪。

除了用图表来展现我们看到的问题以外,有时候我们还需要研究别人提供的图表。这时,看出图像的本质就很重要了。有一种常见的方式剥出图像的本质,那就是染色。所谓染色,就是将研究对象按照一定的要求涂上颜色来解决问题。实质上,染色就是利用图形和颜色来进行分类,从而更加直观地显现出问题的本质。

第6大技巧 思维变换

在逻辑推理过程中,我们经常需要改变自己的思路,也就是进行思维变换,它往往可以使问题变得更容易解决。这里我们着重介绍两种重要的思维变换技巧:对应和转化。

所谓对应,就是将两类元素一一对应,从而把我们需要解决的元素,变换成与其相对应的另外一些元素。对应可以使我们不用去处理问题中较复杂的部分,从而达到简化问题的效果,使问题的解决更方便一些。

转化就是将一个问题转变成另外一个问题来加以解决。和对应有些类似,转化也运用了一一对应的方式,差别在于它更偏重于把整个问题都转化为另一个问题。通常情况下,是将复杂的问题转化为较简单的问题,或者是将一个未解决的问题转化为一个已经解决的问题。

以上是小升初数学逻辑推理题,读后您收获多少呢?

相关推荐:

小升初数学常考题型必考总结

小升初数学复习要点归纳

免责声明

精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。