编辑:
2015-11-25
10.从1到100的自然数中,每次取出2个数,要使它们的和大于100,则共有 _____ 种取法.
【答案】2500
【解】 设选有a、b两个数,且a
当a为1时,b只能为100,1种取法;
当a为2时,b可以为99、100,2种取法;
当a为3时,b可以为98、99、100,3种取法;
当a为4时,b可以为97、98、99、100,4种取法;
当a为5时,b可以为96、97、98、99、100,5种取法;
…… …… ……
当a为50时,b可以为51、52、53、…、99、100,50种取法;
当a为51时,b可以为52、53、…、99、100,49种取法;
当a为52时,b可以为53、…、99、100,48种取法;
…… …… ……
当a为99时,b可以为100,1种取法.
所以共有1+2+3+4+5+…+49+50+49+48+…+2+1=502=2500种取法.
【拓展】从1-100中,取两个不同的数,使其和是9的倍数,有多少种不同的取法?
【解】从除以9的余数考虑,可知两个不同的数除以9的余数之和为9。通过计算,易知除以9余1的有12种,余数为2-8的为11种,余数为0的有 11种,但其中有11个不满足题意:如9+9、18+18……,要减掉11。而余数为1的是12种,多了11种。这样,可以看成,1-100种,每个数都对应11种情况。
11×100÷2=550种。除以2是因为1+8和8+1是相同的情况。
标签:小升初模拟题
精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。