您当前所在位置:首页 > 小学 > 奥数 > 小学二年级奥数

二年级奥数知识点:枚举法

编辑:

2012-08-22

例2 如右图所示,ABCD是一个正方形,边长为2厘米,沿着图中线段从A到C的最短长度为4厘米.问这样的最短路线共有多少条?请一一画出来.

  解:将各种路线一一列出,可知共6条,见下图.

  注意,如果题中不要求将路径一一画出,可采用如右图所示方法较为便捷.图中交点处的数字表示到达该点的路线条数,如O点处的数字2,表示由A到O有2条不同的路径,见上图中的(1)和(2);又H点处的数字3的意义也如此,见上图中的(1)、(2)、(3)可知有3条路径可由A到H.仔细观察,可发现各交点处的数字之间的关系,如O点的2等于F点和E点的数字相加之和,即1+1=2,又如,C点的6等于G点和H点的数字相加之和,即3+3=6.

  例3 在10和31之间有多少个数是3的倍数?

  解:由尝试法可求出答案:

  3×4=12 3×5=15 3×6=18 3×7=21

  3×8=24 3×9=27 3×10=30

  可知满足条件的数是 12、15、18、21、24、27和30共7个.

  注意,倘若问10和1000之间有多少个数是3的倍数,则用上述一一列举的方法就显得太繁琐了,此时可采用下述方法:

  10÷3=3余1,可知10以内有3个数是3的倍数;

  1000÷3=333余1,可知1000以内有333个数是3的倍数;

  333-3=330,则知10~1000之内有330个数是3的倍数.

  由上述这些例题可体会枚举法的优点和缺点及其适用范围.

  

免责声明

精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。