编辑:
2015-08-07
接下来,教材指出:在实际生活中,人们常用“增加百分之几”“减少百分之几”“节约百分之几”……来表示增加、减少的幅度。使学生理解:这些生活中的表述都可以归结为数学上的“求一个数比另一个数多(少)百分之几”。
例4:求比一个数多(或少)百分之几的数是多少
例4是解决求比一个数多(或少)百分之几的数是多少的问题,这类问题的数量关系与求比一个数多(或少)几分之几的数是多少的问题相同。由于有了相关知识基础,学生对解决此类问题不会感到困难。
教材提供了两种基本的解法,体现不同的解题思路,使学生看到每种解法中先算什么,再算什么,着重理解“增加了12%”是增加了谁的12%。
例5:用单位“1”解决实际问题
例5选取了“某种商品4月的价格比3月降了20% ,5月的价格比4月又涨了20%。5月的价格和3月比是涨了还是降了?”这样一个既有趣又有挑战性的数学问题。问题中没有提供商品的具体价格,有利于激发学生的探究兴趣。
教材注重让学生经历发现问题、提出问题、分析问题、解决问题的全过程。在“阅读与理解”时发现按照“要求涨幅或降幅,就要知道前后的价格”的常规思路,遇到了“原来价格未知”的障碍,由此产生假设原有价格的需要。
在学生提出问题的基础上,自主发现可以假设商品原来的价格为某个具体数值(比如100元)。这就将新的问题转化为已学过的问题,利用旧知加以解决。教材以商品原价100元为例,给出具体解法。在解决的过程中,学生可以发现降价的20%和涨价的20%是相对于不同的量而言的,因此,虽然降价和涨价的相对比率相同,降价和涨价的绝对数值却不同。
不同的假设,却可以得到相同的结果,这说明原价是多少并不会影响结论。在此基础上,提出可以把商品的原价假设成抽象的“1”。这个“1”不是“1元”,但可以代表“1元”“100元”“1000元”……是一个高度抽象的概念。
在“回顾与反思”阶段,引导学生进一步讨论:如果用更为一般的假设方法,把商品原价假设为
元。此时5月的价格是
,和3月价格
相比,
,结论不变,进一步验证了假设法的合理性和有效性。
本单元的教学重点是百分数的意义;百分数、小数、分数的互化;用百分数解决实际问题。教学难点是用单位“1”解决实际问题。
以上是精品学习网为老师们提供的百分数教案教案参考资料,更多参考尽在精品学习网!
相关推荐:
标签:六年级数学教案
精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。