您当前所在位置:首页 > 小学 > 六年级 > 数学 > 六年级数学试卷

六年级数学试题:《最短路线》的相关练习题

编辑:duanfj

2011-04-29


在学习几何知识时,同学们已经学过如下两个结论:

(1)连结两点的所有线中,直线段是最短的;

(2)直线外的一个定点与直线上的各点的连线以垂线为最短.

利用这两个结论可以解决许多实际生活中求最短路线的问题.

例1 甲、乙两村之间隔一条河,如图13—1.现在要在小河上架一座桥,使得这两村之间的行程最短,桥应修在何处?

分析:设甲、乙两村分别用点a、b表示.要在河上架桥,关键是要选取一个最佳建桥的位置,使得从甲村出发经过桥到乙村的路程最短.即从甲村到甲村河边的桥头的距离加上桥长(相当于河的宽度),再加上乙村到乙村河边的桥头的距离尽可能短,这是一个求最短折线的问题.直接找出这条折线很困难,能否可以把它转化为直线问题呢?由于河的宽度不变,不论桥修在哪里,桥都是必经之路,且桥长相当于河宽,是一个定值,所以可以预先把这段距离扣除,只要使两镇到河边桥头的距离最短就可以了.

所谓预先将桥长扣除,就是假设先走完桥长,即先把桥平移到甲村,先过了桥,到c点,如图13—2,找出c到b的最短路线,实际上求最短折线问题转化为直线问题.

解:如图13—2.过a点作河岸的垂线,在垂线上截取ac的长等于河宽.连bc交与乙村的河岸于f点,作ef垂直于河的另一岸于e点,则ef为架桥的位置,也就是ae+ef+fb是两村的最短路线.

例2 如图13—3,a、b两个学校都在公路的同侧.想在这两校的附近的公路上建一个汽车站,要求车站到两个学校的距离之和最小,应该把车站建在哪里?

分析:车站建在哪里,使得a到车站与b到车站的距离之和最小,仍然是求最短折线问题,同例1一样关键在于转化成直线问题就好办了.采用轴对称(直线对称)作法.

解:作点b关于公路(将公路看作是一条直线)的对称点b′,如图13—4,即过b点作公路(直线)的垂线交直线于o,并延长bo到b′,使bo=ob′.连结ab′交直线于点e,连be,则车站应建在e处,并且折线aeb为最短.

为什么这条折线是最短的呢?分两步说明:

(1)因为b与b′关于直线对称,根据对称点的性质知,对称轴上的点到两个对称点的距离相等,有be=b′e,所以

ab′=ae+eb′=ae+eb

(2)设e′是直线上不同于e的任意一点,如图13—5,连结ae′、e′b、e′b′,可得

ae′+e′b=ae′+e′b′>ab′(两点之间线段最短)

免责声明

精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。