编辑:
2013-12-26
三、解答题(共9小题,满分90分)
15.请你先化简( a2 a+2 −a+2)÷ 4a a2−4 ,再从-2,2,
2 中选择一个合适的数代入求值.
显示解析
16.如图,把一张长方形卡片ABCD放在宽度为10mm的横格线中,恰好四个顶点都在横格线上,已知α=32°,求长方形卡片的周长.(参考数据sin32°≈0.5cos32°≈0.8tan32°≈0.6)
显示解析
17.如图,A、B两点在函数y= k x 的图象上.
(1)求k的值及直线AB的解析式;
(2)如果一个点的横、纵坐标均为整数,那么我们称这个点是格点.请直接写出图中直线AB与双曲线所围部分(不包括边界)所含格点的个数.
☆☆☆☆☆显示解析
18.某初中为了迎接初三学生体育中考特进行了一次考前模拟测试.如图是女生800米跑的成绩中抽取的10个同学的成绩.
(1)求出这10名女生成绩的中位数、众数和极差;
(2)按《萧山教育局中考体育》规定,女生800米跑成绩不超过3′25〞就可以得满分.现该校初三学生有636人,其中男生比女生少74人. 请你根据上面抽样的结果,估算该校初三学生中有多少名女生该项考试得满分?
显示解析
19.日本在地震后,核电站出现严重的核泄漏事故,为了防止民众受到更多的核辐射,我国某医疗公司主动承担了为日本福田地区生产2万套防辐射衣服的任务,计划10天完成,在生产2天后,日本的核辐射危机加重了,所以需公司提前完成任务,于是公司从其他部门抽调了50名工人参加生产,同时通过技术革新等手段使每位工人的工作效率比原计划提高了25%,结果提前2天完成了生产任务.求该公司原计划安排多少名工人生产防辐射衣服?
显示解析
20.如图,梯形ABCD中,AD∥BC,BC=2AD,F、G分别为边BC、CD的中点,连接AF,FG,过D作DE∥GF交AF于点E.
(1)证明△AED≌△CGF;
(2)若梯形ABCD为直角梯形,判断四边形DEFG是什么特殊四边形?并证明你的结论.
显示解析
21.小军与小玲共同发明了一种“字母棋”,进行比胜负的游戏.她们用四种字母做成10只棋子,其中A棋1只,B棋2只,C棋3只,D棋4只.
“字母棋”的游戏规则为:
①游戏时两人各摸一只棋进行比赛称一轮比赛,先摸者摸出的棋不放回;
②A棋胜B棋、C棋;B棋胜C棋、D棋;C棋胜D棋;D棋胜A棋;
③相同棋子不分胜负.
(1)若小玲先摸,问小玲摸到C棋的概率是多少?
(2)已知小玲先摸到了C棋,小军在剩余的9只棋中随机摸一只,问这一轮中小玲胜小军的概率是多少?
(3)已知小玲先摸一只棋,小军在剩余的9只棋中随机摸一只,问这一轮中小玲希望摸到哪种棋胜小军的概率最大?
★★☆☆☆显示解析
22.阅读理解题:
定义:如果一个数的平方等于-1,记为i2=-1,这个数i叫做虚数单位.那么和我们所学的实数对应起来就叫做复数,表示为a+bi(a,b为实数),a叫这个复数的实部,b叫做这个复数的虚部,它的加,减,乘法运算与整式的加,减,乘法运算类似.
例如计算:(5+i)×(3-4i)=19-17i.
(1)填空:i3= ,i4= .
(2)计算:(3+i)2;
(3)试一试:请利用以前学习的有关知识将 2+i 2−i 化简成a+bi的形式.
显示解析
23.如图(1),抛物线y=x2+x-4与y轴交于点A,E(0,b)为y轴上一动点,过点E的直线y=x+b与抛物线交于点B、C.
(1)求点A的坐标;
(2)当b=0时(如图(2)),△ABE与△ACE的面积大小关系如何?当b>-4时,上述关系还成立吗,为什么?
(3)是否存在这样的b,使得△BOC是以BC为斜边的直角三角形?若存在,求出b;若不存在,说明理由.
总结:2011淮北中考数学一模试卷就介绍到这里了,希望能帮助同学们更好的复习本门课程,更多精彩学习内容请继续关注精品学习网!
相关推荐:
标签:淮北中考试题
精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。