编辑:
2016-02-25
12.5 解析:连接BP,交AC于点Q,连接QD.∵点B与点D关于AC对称,∴BP的长即为PQ+DQ的最小值,
∵CB=4,DP=1.∴CP=3,在Rt△BCP中,
BP=BC2+CP2=42+32=5.
13.(1)证明:在矩形ABCD中,
AB=CD,∠A=∠D=90°,
又∵M是AD的中点,∴AM=DM.
∴△ABM≌△DCM(SAS).
(2)解:四边形MENF是菱形.证明如下:
E,F,N分别是BM,CM,CB的中点,
∴NE∥MF,NE=MF.
∴四边形MENF是平行四边形.
由(1),得BM=CM,∴ME=MF.
∴四边形MENF是菱形.
(3)2∶1 解析:当AD∶AB=2∶1时,四边形MENF是正方形.理由:
∵M为AD中点,∴AD=2AM.
∵AD∶AB=2∶1,∴AM=AB.
∵∠A=90,∴∠ABM=∠AMB=45°.
同理∠DMC=45°,∴∠EMF=180°-45°-45°=90°.
∵四边形MENF是菱形,∴菱形MENF是正方形.
14.解:(1)在△DFC中,∠DFC=90°,∠C=30°,DC=4t,
∴DF=2t,又∵AE=2t,∴AE=DF.
(2)能.理由如下:
∵AB⊥BC,DF⊥BC,∴AE∥DF.
又∵AE=DF,∴四边形AEFD为平行四边形.
当AE=AD时,四边形AEFD是菱形,即60-4t=2t.
解得t=10 s,
∴当t=10 s时,四边形AEFD为菱形.
(3)①当∠DEF=90°时,由(2)知EF∥AD,
∴∠ADE=∠DEF=90°.
∵∠A=60°,∴AD=AE•cos60°=t.
又AD=60-4t,即60-4t=t,解得t=12 s.
②当∠EDF=90°时,四边形EBFD为矩形.
在Rt△AED中,∠A=60°,则∠ADE=30°.
∴AD=2AE,即60-4t=4t,解得t=152 s.
③若∠EFD=90°,则E与B重合,D与A重合,此种情况不存在.
综上所述,当t=152 s或t=12 s时,△DEF为直角三角形.
这就是我们为大家准备的中考数学复习备考必做试题的内容,希望符合大家的实际需要。
相关推荐
标签:衡阳中考试题
精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。