编辑:
2016-01-09
7.解:(1)如图50.
(2)直线BD与⊙A相切.证明如下:
∵∠ABD=∠BAC,∴AC∥BD.
∵∠ACB=90°,⊙A的半径等于BC,
∴点A到直线BD的距离等于BC.
∴直线BD与⊙A相切.
8.解:(1)如图51.
(2)∵BE平分∠ABC,∴∠ABO=∠FBO.
∵AF⊥BE于点O,
∴∠AOB=∠FOB=∠AOE=90°.
又∵BO=BO,
∴△AOB≌△FOB.∴AO=FO,AB=FB.
∵四边形ABCD是平行四边形,
∴AD∥BC,∴∠AEO=∠FBO.
∴△AOE≌△FOB.∴AE=BF.
又∵AE∥BF,∴四边形ABFE是平行四边形.
又∵AB=FB,∴平行四边形ABFE是菱形.
11.(1)证明:如图52.
∵△ABD和△ACE都是等边三角形,
∴AD=AB,AC=AE,∠BAD=∠CAE=60°.
∴∠BAD+∠BAC=∠CAE+∠BAC.
即∠CAD=∠EAB.∴△CAD≌△EAB.
∴BE=CD.
图52 图53
(2)解:BE=CD.
理由:∵四边形ABFD和ACGE均为正方形,
∴AD=AB,AC=AE,∠BAD=∠CAE=90°.
∴∠CAD=∠EAB.∴△CAD≌△EAB.
∴BE=CD.
(3)解:如图53,过A作等腰直角三角形ABD,∠BAD=90°,
则AD=AB=100,∠ABD=45°.∴BD=100 2.
连接CD,则由(2)可知BE=CD.
∵∠ABC=45°,在Rt△DBC中,BC=100,BD=100 2.
∴CD=1002+100 22=100 3.
∴BE的长为100 3米.
希望为大家提供的中考数学考前精练的内容,能够对大家有用,更多相关内容,请及时关注!
相关推荐
标签:江苏中考试题
精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。