您当前所在位置:首页 > 中考 > 吉林中考 > 通化中考 > 通化中考试题

2016吉林通化中考数学考前必做专题试题:函数

编辑:sx_jixia

2016-01-04

为了能更好更全面的做好复习和迎考准备,确保将所涉及的中考考点全面复习到位,让孩子们充满信心的步入考场,现特准备了中考数学考前必做专题试题

一、选择题

1、(2014•济宁第8题)“如果二次函数y=ax2+bx+c的图象与x轴有两个公共点,那么一元二次方程ax2+bx+c=0有两个不相等的实数根.”请根据你对这句话的理解,解决下面问题:若m、n(m

A. m

【考点】: 抛物线与x轴的交点.

【分析】: 依题意画出函数y=(x﹣a)(x﹣b)图象草图,根据二次函数的增减性求解.

【解答】: 解:依题意,画出函数y=(x﹣a)(x﹣b)的图象,如图所示.

函数图象为抛物线,开口向上,与x轴两个交点的横坐标分别为a,b(a

方程1﹣(x﹣a)(x﹣b)=0转化为(x﹣a)(x﹣b)=1,方程的两根是抛物线y=(x﹣a)(x﹣b)与直线y=1的两个交点.

由抛物线开口向上,则在对称轴左侧,y随x增大而减少

故选A.

【点评】: 本题考查了二次函数与一元二次方程的关系,考查了数形结合的数学思想.解题时,画出函数草图,由函数图象直观形象地得出结论,避免了繁琐复杂的计算.

2、(2014年山东泰安第20题)二次函数y=ax2+bx+c(a,b,c为常数,且a≠0)中的x与y的部分对应值如下表:

X ﹣1 0 1 3

y ﹣1 3 5 3

下列结论:

(1)ac<0;

(2)当x>1时,y的值随x值的增大而减小.

(3)3是方程ax2+(b﹣1)x+c=0的一个根;

(4)当﹣10.

其中正确的个数为(  )

A.4个 B. 3个 C. 2个 D. 1个

【分析】:根据表格数据求出二次函数的对称轴为直线x=1.5,然后根据二次函数的性质对各小题分析判断即可得解.

【解答】:由图表中数据可得出:x=1时,y=5值最大,所以二次函数y=ax2+bx+c开口向下,a<0;又x=0时,y=3,所以c=3>0,所以ac<0,故(1)正确;

∵二次函数y=ax2+bx+c开口向下,且对称轴为x= =1.5,∴当x>1.5时,y的值随x值的增大而减小,故(2)错误;

∵x=3时,y=3,∴9a+3b+c=3,∵c=3,∴9a+3b+3=3,∴9a+3b=0,∴3是方程ax2+(b﹣1)x+c=0的一个根,故(3)正确;

∵x=﹣1时,ax2+bx+c=﹣1,∴x=﹣1时,ax2+(b﹣1)x+c=0,∵x=3时,ax2+(b﹣1)x+c=0,且函数有最大值,∴当﹣10,故(4)正确.

故选B.

【点评】:本题考查了二次函数的性质,二次函数图象与系数的关系,抛物线与x轴的交点,二次函数与不等式,有一定难度.熟练掌握二次函数图象的性质是解题的关键.

3、(2014年山东烟台第11题)二次函数y=ax2+bx+c(a≠0)的部分图象如图,图象过点(﹣1,0),对称轴为直线x=2,下列结论:

①4a+b=0;②9a+c>3b;③8a+7b+2c>0;④当x>﹣1时,y的值随x值的增大而增大.

其中正确的结论有(  )

A.1个 B. 2个 C. 3个 D. 4个

【分析】:根据抛物线的对称轴为直线x=﹣ =2,则有4a+b=0;观察函数图象得到当x=﹣3时,函数值小于0,则9a﹣3b+c<0,即9a+c<3b;由于x=﹣1时,y=0,则a﹣b+c=0,易得c=﹣5a,所以8a+7b+2c=8a﹣28a﹣10a=﹣30a,再根据抛物线开口向下得a<0,于是有8a+7b+2c>0;由于对称轴为直线x=2,根据二次函数的性质得到当x>2时,y随x的增大而减小.

【解答】:∵抛物线的对称轴为直线x=﹣ =2,∴b=﹣4a,即4a+b=0,所以①正确;

∵当x=﹣3时,y<0,∴9a﹣3b+c<0,即9a+c<3b,所以②错误;

∵抛物线与x轴的一个交点为(﹣1,0),∴a﹣b+c=0,

而b=﹣4a,∴a+4a+c=0,即c=﹣5a,∴8a+7b+2c=8a﹣28a﹣10a=﹣30a,

∵抛物线开口向下,∴a<0,∴8a+7b+2c>0,所以③正确;

∵对称轴为直线x=2,

∴当﹣12时,y随x的增大而减小,所以④错误.故选B.

【点评】:本题考查了二次函数图象与系数的关系:二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置,当a与b同号时(即ab>0),对称轴在y轴左; 当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点. 抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定,△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.

免责声明

精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。