编辑:
2013-04-27
初中毕业与升学考试主要考查基础知识与基本技能、数学活动过程、数学思想、解决问题能力、对数学的基本认识等。
1.基础知识与基本技能
理解有理数、实数、代数式、方程、不等式、函数等概念;掌握必要的运算(包括估算)技能;能从具体情境中抽象出数学模型,能够探索具体问题中的数量关系和变化规律,能够用恰当的代数模型进行表述。
能够探索并掌握几何对象的有关性质,能够用不同的方式表达几何对象的形状大小、位置与特征;能够在头脑中构建几何对象;进行平面图形的简单变换(平移、 旋转、轴对称);借助于数学证明的方法确认数学命题的正确性;具备基本的作图技能 ;认识投影与视图;理解坐标与图形变换之间的关系。
能够进行数据收集、处理、分析并作出推断;理解抽样方法,体验用样本估计总体的合理性;认识随机现象,能计算一些简单事件的概率。
2.数学活动过程
通过观察、实验、归纳、类比等考查数学活动过程中所表现出来的思维方式、思维水平,从事探究活动的意识、能力等。
3.数学思考方面
适当考查在数学思想、符号意识、空间观念,几何直观、数据分析以及合情推理与演绎推理等方面所表现出来的能力。
4.解决问题的能力方面
能从数学的角度发现问题和提出问题,并运用数学知识和方法等解决简单的实际问题,具有一定的解决问题的基本策略,具有评价与反思的意识。
5.对数学的基本认识方面
适当体现对数学内部统一性的认识(如:一次函数、一次不等式与一次方程之间的联系),体现对数学在实际生活中的应用与其他学科知识之间联系等。
根据《全日制义务教育数学课程标准(实验稿)》中第三学段的内容标准,在“数与代数”、“空间与图形”、“统计与概率”、“综合与实践应用”四个领域中,前三个领域将考试要求由低到高分为四个层次,依次是了解、理解、掌握、运用,表中分别用字母A、B、C、D表示,这里高一级的层次要求包含低一级层次的要求。其具体含义是:
了解: 能从具体事例中,知道或能举例说明对象的有关特征(或意义);能根据对象的特征,从具体情境中辨认出这一对象。
理解: 能描述对象的特征和由来;能明确地阐述此对象与有关对象之间的区别和联系。
掌握: 能在理解的基础上,把对象运用到新的情境中。
灵活运用:能综合运用知识,灵活、合理地选择与运用有关的方法完成特定的数学任务。
下面根据我市九年级数学教学的实际情况,现将本届学生所使用的实验教科书的教学内容,以图表形式分别说明各知识点的考试要求。
标签:中考说明
精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。