您当前所在位置:首页 > 中考 > 中考数学 > 中考数学模拟题

2016年中考数学备考专项模拟练习:梯形

编辑:

2015-11-18

3. (2014•山东淄博,第7题4分)如图,等腰梯形ABCD中,对角线AC、DB相交于点P,∠BAC=∠CDB=90°,AB=AD=DC.则cos∠DPC的值是(  )

A. B. C. D.

考点: 等腰梯形的性质.

分析: 先根据等腰三角形的性质得出∠DAB+∠BAC=180°,AD∥BC,故可得出∠DAP=∠ACB,∠ADB=∠ABD,再由AB=AD=DC可知∠ABD=∠ADB,∠DAP=∠ACD,所以∠DAP=∠ABD=∠DBC,再根据∠BAC=∠CDB=90°可知,3∠ABD=90°,故∠ABD=30°,再由直角三角形的性质求出∠DPC的度数,进而得出结论.

解答: 解:∵梯形ABCD是等腰梯形,

∴∠DAB+∠BAC=180°,AD∥BC,

∴∠DAP=∠ACB,∠ADB=∠ABD,

∵AB=AD=DC,

∴∠ABD=∠ADB,∠DAP=∠ACD,

∴∠DAP=∠ABD=∠DBC,

∵∠BAC=∠CDB=90°,

∴3∠ABD=90°,

∴∠ABD=30°,

在△ABP中,

∵∠ABD=30°,∠BAC=90°,

∴∠APB=60°,

∴∠DPC=60°,

∴cos∠DPC=cos60°=.

故选A.

点评: 本题考查的是等腰梯形的性质,熟知等腰梯形同一底上的两个角相等是解答此题的关键.

4.(2014•浙江宁波,第8题4分)如图,梯形ABCD中,AD∥BC,∠B=∠ACD=90°,AB=2,DC=3,则△ABC与△DCA的面积比为( )

A. 2:3 B. 2:5 C. 4:9 D. :

考点: 相似三角形的判定与性质.

分析: 先求出△CBA∽△ACD,求出 = ,COS∠ACB•COS∠DAC= ,得出△ABC与△DCA的面积比= .

解答: 解:∵AD∥BC,

∴∠ACB=∠DAC

又∵∠B=∠ACD=90°,

∴△CBA∽△ACD

AB=2,DC=3,

∴COS∠ACB= = ,

COS∠DAC= =

∵△ABC与△DCA的面积比= ,

∴△ABC与△DCA的面积比= ,

故选:C.

点评: 本题主要考查了三角形相似的判定及性质,解决本题的关键是明确△ABC与△DCA的面积比= .

免责声明

精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。