您当前所在位置:首页 > 中考 > 中考数学 > 中考数学模拟题

2016年中考数学考前专题练习(必做)

编辑:

2016-01-14

B级 中等题

10.(2013年四川南充)把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是(  )

A.12 B. 24 C. 12 3 D. 16 3

11.(2013年内蒙古呼和浩特)在四边形ABCD中,对角线 AC⊥BD,垂足为O,点E,F,G,H分别为边AD,AB,BC,CD的中点.若AC=8,BD=6,则四边形EFGH 的面积为________.

12.(2013年福建莆田)正方形ABCD的边长为4,点P在DC边上,且DP=1,点Q是 AC上一动点,则DQ+PQ的最小值为____________.

13.(2013年山东青岛)已知:在矩形ABCD中,M,N分别是边AD,BC的中点,E,F分别是线段BM,CM的中点.

(1)求证:△ABM≌△DCM;

(2)判断四边形MENF是什么特殊四边形,并证明你的结论;

(3)当AD∶AB=__________时,四边形MENF是正方形(只写结论,不需证明).

C级 拔尖题

14.(2013年内蒙古赤峰)如图4­3­47,在Rt△ABC中,∠B=90°,AC=60 cm,∠A=60°,点D从点C出发沿CA方向以4 cm/s的速度向点A匀速运动,同时点E从点A出发沿AB方向以2 cm/s的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D,E运动的时间是t s(0 < t ≤ 15).过点D作DF⊥BC于点F,连接DE,EF.

(1)求证:AE=DF;

(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,请说明理由;

(3)当t为何值时,△DEF为直角三角形?请说明理由.

参考答案

10.D 11.12

12.5 解析:连接BP,交AC于点Q,连接QD.∵点B与点D关于AC对称,∴BP的长即为PQ+DQ的最小值,

∵CB=4,DP=1.∴CP=3,在Rt△BCP中,

BP=BC2+CP2=42+32=5.

13.(1)证明:在矩形ABCD中,

AB=CD,∠A=∠D=90°,

又∵M是AD的中点,∴AM=DM.

∴△ABM≌△DCM(SAS).

(2)解:四边形MENF是菱形.证明如下:

E,F,N分别是BM,CM,CB的中点,

∴NE∥MF,NE=MF.

∴四边形MENF是平行四边形.

由(1),得BM=CM,∴ME=MF.

∴四边形MENF是菱形.

(3)2∶1 解析:当AD∶AB=2∶1时,四边形MENF是正方形.理由:

∵M为AD中点,∴AD=2AM.

∵AD∶AB=2∶1,∴AM=AB.

∵∠A=90,∴∠ABM=∠AMB=45°.

同理∠DMC=45°,∴∠EMF=180°-45°-45°=90°.

∵四边形MENF是菱形,∴菱形MENF是正方形.

14.解:(1)在△DFC中,∠DFC=90°,∠C=30°,DC=4t,

∴DF=2t,又∵AE=2t,∴AE=DF.

(2)能.理由如下:

∵AB⊥BC,DF⊥BC,∴AE∥DF.

又∵AE=DF,∴四边形AEFD为平行四边形.

当AE=AD时,四边形AEFD是菱形,即60-4t=2t.

解得t=10 s,

∴当t=10 s时,四边形AEFD为菱形.

(3)①当∠DEF=90°时,由(2)知EF∥AD,

∴∠ADE=∠DEF=90°.

∵∠A=60°,∴AD=AE•cos60°=t.

又AD=60-4t,即60-4t=t,解得t=12 s.

②当∠EDF=90°时,四边形EBFD为矩形.

在Rt△AED中,∠A=60°,则∠ADE=30°.

∴AD=2AE,即60-4t=4t,解得t=152 s.

③若∠EFD=90°,则E与B重合,D与A重合,此种情况不存在.

综上所述,当t=152 s或t=12 s时,△DEF为直角三角形.

这就是我们为大家准备的2016年中考数学考前专题练习的内容,希望符合大家的实际需要。

相关推荐

2016年中考语文第一次模拟试题练习(预测) 

2016中考语文现代文阅读:《冲进风暴逃生》  

免责声明

精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。