您当前所在位置:首页 > 中考 > 中考数学 > 中考数学模拟题

2016年中考数学复习模拟题

编辑:

2016-03-04

14.(1)如图4-3-18(1),▱ABCD的对角线AC,BD交于点O,直线EF过点O,分别交AD,BC于点E,F.求证:AE=CF.

(2)如图4-3-18(2),将▱ABCD(纸片)沿过对角线交点O的直线EF折叠,点A落在点A1处,点B落在点B1处,设FB1交CD于点G,A1B1分别交CD,DE于点H,I.求证:EI=FG.

1.B 2.A 3.D 4.B 5.C 6.15 7.25°

8.平行四边形 9.5

10.证明:∵四边形ABCD是平行四边形,

∴OA=OC,AB∥CD.∴∠OAE=∠OCF.

∵∠AOE=∠COF,∴△OAE≌△OCF(ASA).

∴OE=OF.

11.解:(1)3

(2)①△ABE≌△CDF.

证明:在▱ABCD中,AB∥CD,AB=CD,

∴∠ABE=∠CDF.

又∵BE=DF,∴△ABE≌△CDF(SAS).

②△ADE≌△CBF.

证明:在▱ABCD中,AD∥BC,AD=BC,

∴∠ADE=∠CBF,∵BE=DF,

∴BD-BE=BD-DF,即DE=BF.

∴△ADE≌△CBF(SAS).

③△ABD≌△CDB.

证明:在▱ABCD中,AB=CD,AD=BC,

又∵BD=DB,∴△ABD≌△CDB(SSS).

(任选其中一对进行证明即可)

12.解:(1)略

(2)∵四边形ABCD是平行四边形,

∴AB=CD,∠BAD=∠C,

由折叠性质,可得∠A′=∠A,A′B=AB,

设A′D与BC交于点E,∴∠A′=∠C,A′B=CD,

在△BA′E和△DCE中,

∠A′=∠C,∠BEA′=∠DEC,BA′=DC,

∴△BA′E≌△DCE(AAS).

13.证明:(1)∵四边形ABCD是平行四边形,

∴∠DAB=∠BCD.∴∠EAM=∠FCN.

又∵AD∥BC,∴∠E=∠F.

又∵AE=CF,

∴△AEM≌△CFN(ASA).

(2)∵四边形ABCD是平行四边形,

∴AB∥CD,AB=CD.

又由(1),得AM=CN,∴BM=DN.

又∵BM∥DN∴四边形BMDN是平行四边形.

14.证明:(1)∵四边形ABCD是平行四边形,

∴AD∥BC,OA=OC.∴∠1=∠2.

又∵∠3=∠4,

∴△AOE≌△COF(ASA).∴AE=CF.

(2)∵四边形ABCD是平行四边形,

∴∠A=∠C,∠B=∠D.

由(1),得AE=CF.

由折叠的性质,得AE=A1E,∠A1=∠A,∠B1=∠B,

∴A1E=CF,∠A1=∠C,∠B1=∠D.

又∵∠1=∠2,∴∠3=∠4.

∵∠5=∠3,∠4=∠6,∴∠5=∠6.

在△A1IE与△CGF中,

∠A1=∠C,∠5=∠6,A1E=CF,

∴△A1IE≌△CGF(AAS).∴EI=FG.

为大家推荐的2016年中考数学复习模拟题,还满意吗?相信大家都会仔细阅读,加油哦!

相关链接:

最新2016年中考数学模拟试题  

人教版中考数学模拟试题练习  

免责声明

精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。