编辑:sx_jixia
2016-03-17
中考数学是历年“拉分”科目,很多学生与自己心仪的高中失之交臂,主要原因就是数学“失手”。下文为大家准备了中考数学冲刺模拟试题。
A级 基础题
1.(2013年浙江丽水)在数0,2,-3,-1.2中,属于负整数的是( )
A.0 B.2 C.-3 D.-1.2
2.(2013年四川内江)下列四个实数中,绝对值最小的数是( )
A.-5 B.-2 C.1 D.4
3.(2013年四川凉山州)-2是2的( )
A.相反数 B.倒数 C.绝对值 D.算术平方根
4.(2012年广东深圳)-3的倒数是( )
A.3 B.-3 C.13 D.-13
5.下列各式,运算结果为负数的是( )
A.-(-2)-(-3) B.(-2)×(-3) C.(-2)2 D.(-3)-3
6.(2013年江苏南京)计算:12-7×(-4)+8÷(-2)的结果是( )
A.-24 B.-20 C.6 D.36
7.如果+30 m表示向东走30 m,那么向西走40 m表示为______________.
8.(2013年江苏常州)计算:-(-3)=______,|-3|=______,(-3)-1=______,(-3)2=______.
9.(2013年云南曲靖)若a=1.9×105,b=9.1×104,则a______b(填“<”或“>”).
10.(2012年河北)计算:|-5|-(2-3)0+6×13-12+(-1)2.
B级 中等题
11.(2013年湖北宜昌)实数a,b在数轴上的位置如图114所示,以下说法正确的是( )
A.a+b=0 B.b0 D.|b|<|a|
12.北京时间2011年3月11日,日本近海发生9.0级强烈地震.本次地震导致地球当天自转快了0.000 001 6秒.这里的0.000 001 6秒用科学记数法表示__________秒.
13.(2013年广东初中毕业生学业考试预测卷二)观察下列顺序排列的等式: a1=1-13,a2=12-14,a3=13-15,a4=14-16……试猜想第n个等式(n为正整数):an=__________.
14.(2013年广东深圳十校模拟)计算:|1-3|+-12-3-2cos30°+(π-3)0.
B级 中等题
10.(2013年四川南充)如图4343,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是( )
A.12 B. 24 C. 12 3 D. 16 3
11.(2013年内蒙古呼和浩特)如图4344,在四边形ABCD中,对角线 AC⊥BD,垂足为O,点E,F,G,H分别为边AD,AB,BC,CD的中点.若AC=8,BD=6,则四边形EFGH 的面积为________.
12.(2013年福建莆田)如图4345,正方形ABCD的边长为4,点P在DC边上,且DP=1,点Q是 AC上一动点,则DQ+PQ的最小值为____________.
13.(2013年山东青岛)已知:如图4346,在矩形ABCD中,M,N分别是边AD,BC的中点,E,F分别是线段BM,CM的中点.
(1)求证:△ABM≌△DCM;
(2)判断四边形MENF是什么特殊四边形,并证明你的结论;
(3)当AD∶AB=__________时,四边形MENF是正方形(只写结论,不需证明).
C级 拔尖题
14.(2013年内蒙古赤峰)如图4347,在Rt△ABC中,∠B=90°,AC=60 cm,∠A=60°,点D从点C出发沿CA方向以4 cm/s的速度向点A匀速运动,同时点E从点A出发沿AB方向以2 cm/s的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D,E运动的时间是t s(0 < t ≤ 15).过点D作DF⊥BC于点F,连接DE,EF.
(1)求证:AE=DF;
(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,请说明理由;
(3)当t为何值时,△DEF为直角三角形?请说明理由.
参考答案
1.B 2.C 3.B 4.A 5.C
6.∠B=90°或∠BAC+∠BCA=90°
7.证明:∵四边形ABCD是矩形,
∴AB=CD,AD∥BC,∠B=90°.
∵DF⊥AE,∴∠AFD=∠B=90°.
∵AD∥BC,∴∠DAE=∠AEB.
又∵AD=AE,∴△ADF≌△EAB.
∴DF=AB.∴DF=DC.
8.证明:由平移变换的性质,得
CF=AD=10 cm,DF=AC,
∵∠B=90°,AB=6 cm,BC=8 cm,
∴AC2=AB2+CB2,即AC=10 cm.
∴AC=DF=AD=CF=10 cm.
∴四边形ACFD是菱形.
9.(1)证明:∵点O为AB的中点,OE=OD,
∴四边形AEBD是平行四边形.
∵AB=AC,AD是△ABC的角平分线,
∴AD⊥BC.即∠ADB=90°.
∴四边形AEBD是矩形.
(2)解:当△ABC是等腰直角三角形时,
矩形AEBD是正方形.
∵△ABC是等腰直角三角形,
∴∠BAD=∠CAD=∠DBA=45°.∴BD=AD.
由(1)知四边形AEBD是矩形,
∴四边形AEBD是正方形.
10.D 11.12
标签:中考数学模拟题
精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。