编辑:
2016-06-03
5.(2014•甘肃兰州,第1题4分)如图,在△ABC中,∠ACB=90°,∠ABC=30°,AB=2.将△ABC绕直角顶点C逆时针旋转60°得△A′B′C′,则点B转过的路径长为( )
A. B. C. D. π
考点: 旋转的性质;弧长的计算.
分析: 利用锐角三角函数关系得出BC的长,进而利用旋转的性质得出∠BCB′=60°,再利用弧长公式求出即可.
解答: 解:∵在△ABC中,∠ACB=90°,∠ABC=30°,AB=2,
∴cos30°= ,
∴BC=ABcos30°=2× = ,
∵将△ABC绕直角顶点C逆时针旋转60°得△A′B′C′,
∴∠BCB′=60°,
∴点B转过的路径长为: = π.
故选:B.
点评: 此题主要考查了旋转的性质以及弧长公式应用,得出点B转过的路径形状是解题关键.
6.(2014•襄阳,第11题3分)用一个圆心角为120°,半径为3的扇形作一个圆锥的侧面,则这个圆锥的底面半径为( )
A.2π B. 1 C.3 D. 2
考点: 圆锥的计算
分析: 易得扇形的弧长,除以2π即为圆锥的底面半径.
解答: 解:扇形的弧长= =2π,
故圆锥的底面半径为2π÷2π=1.
故选B.
点评: 考查了扇形的弧长公式;圆的周长公式;用到的知识点为:圆锥的弧长等于底面周长.
7.(2014•四川自贡,第8题4分)一个扇形的半径为8cm,弧长为 cm,则扇形的圆心角为( )
A. 60° B. 120° C. 150° D. 180°
小编为大家精心推荐的中考数学热点必考题还满意吗?相信大家都会仔细阅读,加油哦!
相关推荐:
标签:中考数学模拟题
精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。