您当前所在位置:首页 > 中考 > 中考数学 > 中考数学模拟题

2017中考数学备考专项练习:锐角三角函数

编辑:

2016-09-04

考点: 特殊角的三角函数值.

分析: 根据特殊角的三角函数值解题即可.

解答: 解:cos60°= .

故选A.

点评: 本题考查特殊角的三角函数值,准确掌握特殊角的函数值是解题关键.

二、填空题

1. (2014年贵州黔东南11.(4分))cos60°=  .

考点: 特殊角的三角函数值.

分析: 根据特殊角的三角函数值计算.

解答: 解:cos60°=.

点评: 本题考查特殊角三角函数值的计算,特殊角三角函数值计算在中考中经常出现,要掌握特殊角度的三角函数值.

2. (2014•江苏苏州,第15题3分)如图,在△ABC中,AB=AC=5,BC=8.若∠BPC=∠BAC,则tan∠BPC=  .

考点: 锐角三角函数的定义;等腰三角形的性质;勾股定理

分析: 先过点A作AE⊥BC于点E,求得∠BAE=∠BAC,故∠BPC=∠BAE.再在Rt△BAE中,由勾股定理得AE的长,利用锐角三角函数的定义,求得tan∠BPC=tan∠BAE= .

解答: 解:过点A作AE⊥BC于点E,

∵AB=AC=5,

∴BE=BC=×8=4,∠BAE=∠BAC,

∵∠BPC=∠BAC,

∴∠BPC=∠BAE.

在Rt△BAE中,由勾股定理得

AE= ,

∴tan∠BPC=tan∠BAE= .

故答案为:.

点评: 求锐角的三角函数值的方法:利用锐角三角函数的定义,通过设参数的方法求三角函数值,或者利用同角(或余角)的三角函数关系式求三角函数值.

3.(2014•四川内江,第23题,6分)如图,∠AOB=30°,OP平分∠AOB,PC⊥OB于点C.若OC=2,则PC的长是   .

考点: 含30度角的直角三角形;勾股定理;矩形的判定与性质.

专题: 计算题.

分析: 延长CP,与OA交于点Q,过P作PD⊥OA,利用角平分线定理得到PD=PC,在直角三角形OQC中,利用锐角三角函数定义求出QC的长,在直角三角形QDP中,利用锐角三角函数定义表示出PQ,由QP+PC=QC,求出PC的长即可.

解答: 解:延长CP,与OA交于点Q,过P作PD⊥OA,

∵OP平分∠AOB,PD⊥OA,PC⊥OB,

∴PD=PC,

在Rt△QOC中,∠AOB=30°,OC=2,

∴QC=OCtan30°=2× = ,∠APD=30°,

在Rt△QPD中,cos30°= = ,即PQ= DP= PC,

∴QC=PQ+PC,即 PC+PC= ,

解得:PC= .

故答案为:

点评: 此题考查了含30度直角三角形的性质,锐角三角函数定义,熟练掌握直角三角形的性质是解本题的关键.

4.(2014•四川宜宾,第16题,3分)规定:sin(﹣x)=﹣sinx,cos(﹣x)=cosx,sin(x+y)=sinx•cosy+cosx•siny.

据此判断下列等式成立的是 ②③④ (写出所有正确的序号)

①cos(﹣60°)=﹣;

②sin75°= ;

③sin2x=2sinx•cosx;

④sin(x﹣y)=sinx•cosy﹣cosx•siny.

考点: 锐角三角函数的定义;特殊角的三角函数值.

专题: 新定义.

分析: 根据已知中的定义以及特殊角的三角函数值即可判断.

解答: 解:①cos(﹣60°)=cos60°=,命题错误;

②sin75°=sin(30°+45°)=sin30°•cos45°+cos30°•sin45°=× + × = + = ,命题正确;

③sin2x=sinx•cosx+cosx•sinx═2sinx•cosx,故命题正确;

④sin(x﹣y)=sinx•cos(﹣y)+cosx•sin(﹣y)=sinx•cosy﹣cosx•siny,命题正确.

故答案是:②③④.

点评: 本题考查锐角三角函数以及特殊角的三角函数值,正确理解题目中的定义是关键.

5.(2014•甘肃白银、临夏,第15题4分)△ABC中,∠A、∠B都是锐角,若sinA= ,cosB=,则∠C=   .

考点: 特殊角的三角函数值;三角形内角和定理.

分析: 先根据特殊角的三角函数值求出∠A、∠B的度数,再根据三角形内角和定理求出∠C即可作出判断.

解答: 解:∵△ABC中,∠A、∠B都是锐角sinA= ,cosB=,

∴∠A=∠B=60°.

∴∠C=180°﹣∠A﹣∠B=180°﹣60°﹣60°=60°.

故答案为:60°.

点评: 本题考查的是特殊角的三角函数值及三角形内角和定理,比较简单.

6. ( 2014•广西贺州,第18题3分)网格中的每个小正方形的边长都是1,△ABC每个顶点都在网格的交点处,则sinA=  .

考点: 锐角三角函数的定义;三角形的面积;勾股定理.

分析: 根据正弦是角的对边比斜边,可得答案.

解答: 解:如图,作AD⊥BC于D,CE⊥AB于E,

由勾股定理得AB=AC=2 ,BC=2 ,AD=3 ,

由BC•AD=AB•CE,

即CE= = ,

sinA= = =,

故答案为:.

点评: 本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.

这就是我们为大家准备的2017中考数学备考专项练习的内容,希望符合大家的实际需要。

相关推荐

2017年中考政治复习试题(必做)  

2017中考政治备考:模拟试题及答案

免责声明

精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。