您当前所在位置:首页 > 中考 > 中考数学 > 中考数学模拟题

2017中考数学备考模拟题(专项练习)

编辑:

2016-09-07

二、填空题

1. 直线l1∥l2,一块含45°角的直角三角板如图放置,∠1=85°,则∠2= 40° .

考点: 平行线的性质;三角形内角和定理

分析: 根据两直线平行,同位角相等可得∠3=∠1,再根据三角形的一个外角等于与它不相邻的两个内角的和求出∠4,然后根据对顶角相等解答.

解答: 解:∵l1∥l2,

∴∠3=∠1=85°,

∴∠4=∠3﹣45°=85°﹣45°=40°,

∴∠2=∠4=40°.

故答案为:40°.

点评: 本题考查了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键.

2.(2014•湖南怀化,第15题,3分)如图,在△ABC中,∠A=30°,∠B=50°,延长BC到D,则∠ACD= 80 °.

考点: 三角形的外角性质.

分析: 根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.

解答: 解:∵∠A=30°,∠B=50°,

∴∠ACD=∠A+∠B=30°+50°=80°.

故答案为:80.

点评: 本题考查了三角形的一个外角等于与它不相邻的两个内角的和,熟记性质是解题的关键.

3. (2014•江苏盐城,第14题3分)如图,A、B两地间有一池塘阻隔,为测量A、B两地的距离,在地面上选一点C,连接CA、CB的中点D、E.若DE的长度为30m,则A、B两地的距离为 60 m.

考点: 三角形中位线定理.

专题: 应用题.

分析: 根据三角形中位线求出AB=2DE,代入求出即可.

解答: 解:∵D、E分别是AC、BC的中点,DE=30m,

∴AB=2DE=60m

故答案为:60.

点评: 本题考查了三角形的中位线的应用,注意:三角形的中位线平行于第三边,并且等于第三边的一半.

4.(2014•广州,第11题3分) 中,已知 , ,则 的外角的度数是_____.

【考点】三角形外角

【分析】本题主要考察三角形外角的计算, ,则 的外角为

【答案】

5.(2014•广州,第12题3分)已知 是∠AOB的平分线,点P在OC上,PD⊥OA,PE⊥OB,垂足分别为点 , ,则PE的长度为_____.

【考点】角平线的性质

【分析】角平分线上的点到角的两边距离相等.

【答案】10

6. 如图,在△ABC中,∠C=40°,CA=CB,则△ABC的外角∠ABD= 110 °.

考点: 等腰三角形的性质.

分析: 先根据等腰三角形的性质和三角形的内角和定理求出∠A,再根据三角形的外角等于等于与它不相邻的两个内角的和,进行计算即可.

解答: 解:∵CA=CB,

∴∠A=∠ABC,

∵∠C=40°,

∴∠A=70°

∴∠ABD=∠A+∠C=110°.

故答案为:110.

点评: 此题考查了等腰三角形的性质,用到的知识点是等腰三角形的性质、三角形的外角等于等于与它不相邻的两个内角的和.

7. 若等腰三角形的两条边长分别为7cm和14cm,则它的周长为 35 cm.

考点: 等腰三角形的性质;三角形三边关系.

分析: 题目给出等腰三角形有两条边长为7cm和14cm,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.

解答: 解:①14cm为腰,7cm为底,此时周长为14+14+7=35cm;

②14cm为底,7cm为腰,则两边和等于第三边无法构成三角形,故舍去.

故其周长是35cm.

故答案为35.

点评: 此题主要考查学生对等腰三角形的性质及三角形的三边关系的掌握情况.已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.

8. 如图,以△ABC的边BC为直径的⊙O分别交AB、AC于点D、E,连结OD、OE,若∠A=65°,则∠DOE= 50° .

(第2题图)

考点: 圆的认识;三角形内角和定理;等腰三角形的性质.

分析: 首先根据三角形内角和求得∠B+∠C的度数,然后求得其二倍,然后利用三角形的内角和求得∠BOD+∠EOC,然后利用平角的性质求得即可.

解答: 解:∵∠A=65°,

∴∠B+∠C=180°﹣65°=115°,

∴∠BDO=∠DBO,∠OEC=∠OCE,

∴∠BDO+∠DBO+∠OEC+∠OCE=2×115°=230°,

∴∠BOD+∠EOC=2×180°﹣230°=130°,

∴∠DOE=180°﹣130°=50°,

故答案为:50°.

点评: 本题考查了圆的认识及三角形的内角和定理等知识,难度不大.

9. (2014•乐山,第14题3分)如图,在△ABC中,BC边的中垂线交BC于D,交AB于E.若CE平分∠ACB,∠B=40°,则∠A= 60 度.

考点: 线段垂直平分线的性质..

分析: 根据线段垂直平分线得出BE=CE,推出∠B=∠BCE=40°,求出∠ACB=2∠BCE=80°,代入∠A=180°﹣∠B﹣∠ACB求出即可.

解答: 解:∵DE是线段BC的垂直平分线,

∴BE=CE,

∴∠B=∠BCE=40°,

∵CE平分∠ACB,

∴∠ACB=2∠BCE=80°,

∴∠A=180°﹣∠B﹣∠ACB=60°,

故答案为:60.

点评: 本题考查了等腰三角形性质,线段垂直平分线性质,三角形内角和定理的应用,注意:线段垂直平分线上的点到线段两个端点的距离相等.

10.如图,为估计池塘岸边A,B两点间的距离,在池塘的一侧选取点O,分别取OA,OB的中点M,N,测得MN=32m,则A,B两点间的距离是 64 m.

考点: 三角形中位线定理.

专题: 应用题.

分析: 根据M、N是OA、OB的中点,即MN是△OAB的中位线,根据三角形的中位线定理:三角形的中位线平行于第三边且等于第三边的一半,即可求解.

解答: 解:∵M、N是OA、OB的中点,即MN是△OAB的中位线,

∴MN= AB,

∴AB=2CD=2×32=64(m).

故答案是:64.

点评: 本题考查了三角形的中位线定理应用,正确理解定理是解题的关键.

11.将一副直角三角板如图放置,使含30°角的三角板的直角边和含45°角的三角板的一条直角边重合,则∠1的度数为 75 度.

考点: 三角形内角和定理;平行线的性质

专题: 计算题;压轴题.

分析: 根据三角形三内角之和等于180°求解.

解答: 解:如图.

∵∠3=60°,∠4=45°,

∴∠1=∠5=180°﹣∠3﹣∠4=75°.

故答案为:75.

点评: 考查三角形内角之和等于180°.

12、如图,将△ABC放在每个小正方形的边长为1的网格中,点A、B、C均落在格点上,用一个圆面去覆盖△ABC,能够完全覆盖这个三角形的最小圆面的半径是   .

考点: 三角形的外接圆与外心

专题: 网格型.

分析: 根据题意得出△ABC的外接圆的圆心位置,进而利用勾股定理得出能够完全覆盖这个三角形的最小圆面的半径.

解答: 解:如图所示:点O为△ABC外接圆圆心,则AO为外接圆半径,

故能够完全覆盖这个三角形的最小圆面的半径是: .

故答案为: .

点评: 此题主要考查了三角形的外接圆与外心,得出外接圆圆心位置是解题关键.

三.解答题

1. 如图,EF∥BC,AC平分∠BAF,∠B=80°.求∠C的度数.

(第1题图)

考点: 平行线的性质.

分析: 根据两直线平行,同旁内角互补求出∠BAF,再根据角平分线的定义求出∠CAF,然后根据两直线平行,内错角相等解答.

解答: 解:∵EF∥BC,

∴∠BAF=180°﹣∠B=100°,

∵AC平分∠BAF,

∴∠CAF= ∠BAF=50°,

∵EF∥BC,

∴∠C=∠CAF=50°.

点评: 本题考查了平行线的性质,角平分线的定义,熟记性质并准确识图是解题的关键.

2.  如图,AB是半圆O的直径,C、D是半圆O上的两点,且OD∥BC,OD与AC交于点E.

(1)若∠B=70°,求∠CAD的度数;

(2)若AB=4,AC=3,求DE的长.

考点: 圆周角定理;平行线的性质;三角形中位线定理

分析: (1)根据圆周角定理可得∠ACB=90°,则∠CAB的度数即可求得,在等腰△AOD中,根据等边对等角求得∠DAO的度数,则∠CAD即可求得;

(2)易证OE是△ABC的中位线,利用中位线定理求得OE的长,则DE即可求得.

解答: 解:(1)∵AB是半圆O的直径,

∴∠ACB=90°,

又∵OD∥BC,

∴∠AEO=90°,即OE⊥AC,∠CAB=90°﹣∠B=90°﹣70°=20°.

∵OA=OD,

∴∠DAO=∠ADO= = =55°

∴∠CAD=∠DAO﹣∠CAB=55°﹣20°=35°;

(2)在直角△ABC中,BC= = = .

∵OE⊥AC,

∴AE=EC,

又∵OA=OB,

∴OE= BC= .

又∵OD= AB=2,

∴DE=OD﹣OE=2﹣ .

点评: 本题考查了圆周角定理以及三角形的中位线定理,正确证明OE是△ABC的中位线是关键.

希望为大家提供的2017中考数学备考模拟题的内容,能够对大家有用,更多相关内容,请及时关注!

相关推荐

2017中考语文复习指导:字音字形辨析

中考语文复习指导:语文作文应该如何准备

免责声明

精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。