编辑:sx_jixia
2016-04-22
科学安排、合理利用,在这有限的时间内中等以上的学生成绩就会有明显的提高,为了复习工作能够科学有效,为了做好中考复习工作全面迎接中考,下文为各位考生准备了中考数学考前必做专题试题。
一、选择题
1. (2014•无锡,第8题3分)如图,AB是⊙O的直径,CD是⊙O的切线,切点为D,CD与AB的延长线交于点C,∠A=30°,给出下面3个结论:①AD=CD;②BD=BC;③AB=2BC,其中正确结论的个数是( )
A. 3 B. 2 C. 1 D. 0
考点: 切线的性质.
分析: 连接OD,CD是⊙O的切线,可得CD⊥OD,由∠A=30°,可以得出∠ABD=60°,△ODB是等边三角形,∠C=∠BDC=30°,再结合在直角三角形中300所对的直角边等于斜边的一半,继而得到结论①②③成立.
解答: 解:如图,连接OD,
∵CD是⊙O的切线,
∴CD⊥OD,
∴∠ODC=90°,
又∵∠A=30°,
∴∠ABD=60°,
∴△OBD是等边三角形,
∴∠DOB=∠ABD=60°,AB=2OB=2OD=2BD.
∴∠C=∠BDC=30°,
∴BD=BC,②成立;
∴AB=2BC,③成立;
∴∠A=∠C,
∴DA=DC,①成立;
综上所述,①②③均成立,
故答案选:A.
点评: 本题考查了圆的有关性质的综合应用,在本题中借用切线的性质,求得相应角的度数是解题的关键.
2.(2014•四川广安,第10题3分)如图,矩形ABCD的长为6,宽为3,点O1为矩形的中心,⊙O2的半径为1,O1O2⊥AB于点P,O1O2=6.若⊙O2绕点P按顺时针方向旋转360°,在旋转过程中,⊙O2与矩形的边只有一个公共点的情况一共出现( )
A. 3次 B. 4次 C. 5次 D. 6次
考点: 直线与圆的位置关系.
分析: 根据题意作出图形,直接写出答案即可.
解答: 解:如图:,⊙O2与矩形的边只有一个公共点的情况一共出现4次,
故选B.
点评: 本题考查了直线与圆的位置关系,解题的关键是了解当圆与直线相切时,点到圆心的距离等于圆的半径.
3. (2014•益阳,第8题,4分)如图,在平面直角坐标系xOy中,半径为2的⊙P的圆心P的坐标为(﹣3,0),将⊙P沿x轴正方向平移,使⊙P与y轴相切,则平移的距离为( )
(第1题图)
A. 1 B. 1或5 C. 3 D. 5
考点: 直线与圆的位置关系;坐标与图形性质.
分析: 平移分在y轴的左侧和y轴的右侧两种情况写出答案即可.
解答: 解:当⊙P位于y轴的左侧且与y轴相切时,平移的距离为1;
当⊙P位于y轴的右侧且与y轴相切时,平移的距离为5.
故选B.
点评: 本题考查了直线与圆的位置关系,解题的关键是了解当圆与直线相切时,点到圆心的距离等于圆的半径.
4.(2014年山东泰安,第18题3分)如图,P为⊙O的直径BA延长线上的一点,PC与⊙O相切,切点为C,点D是⊙上一点,连接PD.已知PC=PD=BC.下列结论:
(1)PD与⊙O相切;(2)四边形PCBD是菱形;(3)PO=AB;(4)∠PDB=120°.
其中正确的个数为( )
A. 4个 B. 3个 C. 2个 D. 1个
分析: (1)利用切线的性质得出∠PCO=90°,进而得出△PCO≌△PDO(SSS),即可得出∠PCO=∠PDO=90°,得出答案即可;
(2)利用(1)所求得出:∠CPB=∠BPD,进而求出△CPB≌△DPB(SAS),即可得出答案;
(3)利用全等三角形的判定得出△PCO≌△BCA(ASA),进而得出CO= PO= AB;
(4)利用四边形PCBD是菱形,∠CPO=30°,则DP=DB,则∠DPB=∠DBP=30°,求出即可.
解:(1)连接CO,DO,
∵PC与⊙O相切,切点为C,∴∠PCO=90°,
在△PCO和△PDO中, ,∴△PCO≌△PDO(SSS),∴∠PCO=∠PDO=90°,
∴PD与⊙O相切,故此选项正确;
(2)由(1)得:∠CPB=∠BPD,
在△CPB和△DPB中, ,∴△CPB≌△DPB(SAS),
∴BC=BD,∴PC=PD=BC=BD,∴四边形PCBD是菱形,故此选项正确;
标签:中考数学试题
精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。