您当前所在位置:首页 > 中考 > 中考数学 > 中考数学试题

2017中考数学考前必做试题—矩形、菱形

编辑:

2016-10-30

14.四边形 、 都是正方形,点 在线段 上,连接 , 和 相交于点 .设 , ( ).下列结论:① ;② ;③ ;④ .其中结论正确的个数是( ).

(A)4个 (B)3个 (C)2个 (D)1个

【考点】三角形全等、相似三角形

【分析】①由 可证 ,故①正确;

②延长BG交DE于点H,由①可得 , (对顶角)

∴ =90°,故②正确;

③由 可得 ,故③不正确;

④ , 等于相似比的平方,即 ,

∴ ,故④正确.

【答案】B

15.菱形ABCD中,对角线AC、BC相交于点O,H为AD边中点,菱形ABCD的周长为28,则OH的长等于( )

A. 3.5 B. 4 C. 7 D. 14

考点: 菱形的性质;直角三角形斜边上的中线;三角形中位线定理

分析: 根据菱形的四条边都相等求出AB,菱形的对角线互相平分可得OB=OD,然后判断出OH是△ABD的中位线,再根据三角形的中位线平行于第三边并且等于第三边的一半可得OH= AB.

解答: 解:∵菱形ABCD的周长为28,

∴AB=28÷4=7,OB=OD,

∵H为AD边中点,

∴OH是△ABD的中位线,

∴OH= AB= ×7=3.5.

故选A.

点评: 本题考查了菱形的对角线互相平分的性质,三角形的中位线平行于第三边并且等于第三边的一半,熟记性质与定理是解题的关键.

16.在矩形ABCD中,点E,F分别在边AB,BC上,且AE= AB,将矩形沿直线EF折叠,点B恰好落在AD边上的点P处,连接BP交EF于点Q,对于下列结论:①EF=2BE;②PF=2PE;③FQ=4EQ;④△PBF是等边三角形.其中正确的是(  )

A. ①② B. ②③ C. ①③ D. ①④

考点: 翻折变换(折叠问题);矩形的性质

分析: 求出BE=2AE,根据翻折的性质可得PE=BE,再根据直角三角形30°角所对的直角边等于斜边的一半求出∠APE=30°,然后求出∠AEP=60°,再根据翻折的性质求出∠BEF=60°,根据直角三角形两锐角互余求出∠EFB=30°,然后根据直角三角形30°角所对的直角边等于斜边的一半可得EF=2BE,判断出①正确;利用30°角的正切值求出PF= PE,判断出②错误;求出BE=2EQ,EF=2BE,然后求出FQ=3EQ,判断出③错误;求出∠PBF=∠PFB=60°,然后得到△PBF是等边三角形,判断出④正确.

解答: 解:∵AE= AB,

∴BE=2AE,

由翻折的性质得,PE=BE,

∴∠APE=30°,

∴∠AEP=90°﹣30°=60°,

∴∠BEF= (180°﹣∠AEP)= (180°﹣60°)=60°,

∴∠EFB=90°﹣60°=30°,

∴EF=2BE,故①正确;

∵BE=PE,

∴EF=2PE,

∵EF>PF,

∴PF>2PE,故②错误;

由翻折可知EF⊥PB,

∴∠EBQ=∠EFB=30°,

∴BE=2EQ,EF=2BE,

∴FQ=3EQ,故③错误;

由翻折的性质,∠EFB=∠BFP=30°,

∴∠BFP=30°+30°=60°,

∵∠PBF=90°﹣∠EBQ=90°﹣30°=60°,

∴∠PBF=∠PFB=60°,

∴△PBF是等边三角形,故④正确;

综上所述,结论正确的是①④.

故选D.

点评: 本题考查了翻折变换的性质,直角三角形30°角所对的直角边等于斜边的一半的性质,直角三角形两锐角互余的性质,等边三角形的判定,熟记各性质并准确识图是解题的关键.

17.(正方形OABC的两边OA、OC分别在x轴、y轴上,点D(5,3)在边AB上,以C为中心,把△CDB旋转90°,则旋转后点D的对应点D′的坐标是(  )

A. (2,10) B. (﹣2,0) C. (2,10)或(﹣2,0) D. (10,2)或(﹣2,0)

考点: 坐标与图形变化-旋转.

分析: 分顺时针旋转和逆时针旋转两种情况讨论解答即可.

解答: 解:∵点D(5,3)在边AB上,

∴BC=5,BD=5﹣3=2,

①若顺时针旋转,则点D′在x轴上,OD′=2,

所以,D′(﹣2,0),

②若逆时针旋转,则点D′到x轴的距离为10,到y轴的距离为2,

所以,D′(2,10),

综上所述,点D′的坐标为(2,10)或(﹣2,0).

故选C.

点评: 本题考查了坐标与图形变化﹣旋转,正方形的性质,难点在于分情况讨论.

18.(D为△ABC内部一点,E、F两点分别在AB、BC上,且四边形DEBF为矩形,直线CD交AB于G点.若CF=6,BF=9,AG=8,则△ADC的面积为何?(  )

A.16 B.24 C.36 D.54

分析:由于△ADC=△AGC﹣△ADG,根据矩形的性质和三角形的面积公式计算即可求解.

解:△ADC=△AGC﹣△ADG=12×AG×BC﹣12×AG×BF

=12×8×(6+9)﹣12×8×9=60﹣36=24.

故选:B.

点评:考查了三角形的面积和矩形的性质,本题关键是活用三角形面积公式进行计算.

19.矩形ABCD中,AD=3AB,O为AD中点,是半圆.甲、乙两人想在上取一点P,使得△PBC的面积等于矩形ABCD的面积其作法如下:

(甲) 延长BO交于P点,则P即为所求;

(乙) 以A为圆心,AB长为半径画弧,交于P点,则P即为所求.

对于甲、乙两人的作法,下列判断何者正确?(  )

A.两人皆正确 B.两人皆错误 C.甲正确,乙错误 D.甲错误,乙正确

分析:利用三角形的面积公式进而得出需P甲H=P乙K=2AB,即可得出答案.

解:要使得△PBC的面积等于矩形ABCD的面积,

需P甲H=P乙K=2AB.

故两人皆错误.

故选:B.

点评:此题主要考查了三角形面积求法以及矩形的性质,利用四边形与三角形面积关系得出是解题关键.

20.菱形的两条对角线长分别是6和8,则此菱形的边长是( )

A. 10 B. 8 C. 6 D. 5

考点: 菱形的性质;勾股定理.

分析: 根据菱形的性质及勾股定理即可求得菱形的边长.

解答: 解:∵四边形ABCD是菱形,AC=8,BD=6,

∴OB=OD=3,OA=OC=4,AC⊥BD,

在Rt△AOB中,

由勾股定理得:AB= = =5,

即菱形ABCD的边长AB=BC=CD=AD=5,

故选D.

点评: 本题考查了菱形的性质和勾股定理,关键是求出OA、OB的长,注意:菱形的对角线互相平分且垂直.

21.正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,H是AF的中点,那么CH的长是( )

A. 2.5 B.

C.

D. 2

考点: 直角三角形斜边上的中线;勾股定理;勾股定理的逆定理.

分析: 连接AC、CF,根据正方形性质求出AC、CF,∠ACD=∠GCF=45°,再求出∠ACF=90°,然后利用勾股定理列式求出AF,再根据直角三角形斜边上的中线等于斜边的一半解答即可.

解答: 解:如图,连接AC、CF,

∵正方形ABCD和正方形CEFG中,BC=1,CE=3,

∴AC= ,CF=3 ,

∠ACD=∠GCF=45°,

∴∠ACF=90°,

由勾股定理得,AF= = =2 ,

∵H是AF的中点,

∴CH= AF= ×2 = .

故选B.

点评: 本题考查了直角三角形斜边上的中线等于斜边的一半的性质,正方形的性质,勾股定理,熟记各性质并作辅助线构造出直角三角形是解题的关键.

免责声明

精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。