编辑:
2016-10-30
22.已知矩形ABCD的周长为20cm,两条对角线AC,BD相交于点O,过点O作AC的垂线EF,分别交两边AD,BC于E,F(不与顶点重合),则以下关于△CDE与△ABF判断完全正确的一项为( )
A. △CDE与△ABF的周长都等于10cm,但面积不一定相等
B. △CDE与△ABF全等,且周长都为10cm
C. △CDE与△ABF全等,且周长都为5cm
D. △CDE与△ABF全等,但它们的周长和面积都不能确定
考点: 矩形的性质;全等三角形的判定与性质;线段垂直平分线的性质.
分析: 根据矩形的性质,AO=CO,由EF⊥AC,得EA=EC,则△CDE的周长是矩形周长的一半,再根据全等三角形的判定方法可求出△CDE与△ABF全等,进而得到问题答案.
解答: 解:∵AO=CO,EF⊥AC,
∴EF是AC的垂直平分线,
∴EA=EC,
∴△CDE的周长=CD+DE+CE=CD+AD= 矩形ABCD的周长=10cm,
同理可求出△ABF的周长为10cm,
根据全等三角形的判定方法可知:△CDE与△ABF全等,
故选B.
点评: 本题考查了矩形的对角线互相平分的性质,还考查了线段垂直平分线的性质以及全等三角形的判定方法,题目的难度不大.
23.已知四边形ABCD是平行四边形,再从①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD四个条件中,选两个作为补充条件后,使得四边形ABCD是正方形,现有下列四种选法,其中错误的是( )
A. 选①② B. 选②③ C. 选①③ D. 选②④
考点: 正方形的判定;平行四边形的性质.
分析: 要判定是正方形,则需能判定它既是菱形又是矩形.
解答: 解:A、由①得有一组邻边相等的平行四边形是菱形,由②得有一个角是直角的平行四边形是矩形,所以平行四边形ABCD是正方形,正确,故本选项不符合题意;
B、由②得有一个角是直角的平行四边形是矩形,由③得对角线相等的平行四边形是矩形,所以不能得出平行四边形ABCD是正方形,错误,故本选项符合题意;
C、由①得有一组邻边相等的平行四边形是菱形,由③得对角线相等的平行四边形是矩形,所以平行四边形ABCD是正方形,正确,故本选项不符合题意;
D、由②得有一个角是直角的平行四边形是矩形,由④得对角线互相垂直的平行四边形是菱形,所以平行四边形ABCD是正方形,正确,故本选项不符合题意.
故选B.
点评: 本题考查了正方形的判定方法:
①先判定四边形是矩形,再判定这个矩形有一组邻边相等;
②先判定四边形是菱形,再判定这个矩形有一个角为直角.
③还可以先判定四边形是平行四边形,再用1或2进行判定.
为大家推荐的中考数学考前必做试题的内容,还满意吗?相信大家都会仔细阅读,加油哦!
相关推荐
标签:中考数学试题
精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。