您当前所在位置:首页 > 中考 > 山西中考 > 长治中考 > 长治中考试题

2015年长治中考数学考前必做专题—梯形

编辑:

2015-05-04

5. (2014•青岛,第13题3分)如图,在等腰梯形ABCD中,AD=2,∠BCD=60°,对角线AC平分∠BCD,E,F分别是底边AD,BC的中点,连接EF.点P是EF上的任意一点,连接PA,PB,则PA+PB的最小值为 2  .

考点: 轴对称-最短路线问题;等腰梯形的性质.

分析: 要求PA+PB的最小值,PA、PB不能直接求,可考虑转化PA、PB的值,从而找出其最小值求解.

解答: 解:∵E,F分别是底边AD,BC的中点,四边形ABCD是等腰梯形,

∴B点关于EF的对称点C点,

∴AC即为PA+PB的最小值,

∵∠BCD=60°,对角线AC平分∠BCD,

∴∠ABC=60°,∠BCA=30°,

∴∠BAC=90°,

∵AD=2,

∴PA+PB的最小值=AB•tan60°= .

故答案为:2 .

点评: 考查等腰梯形的性质和轴对称等知识的综合应用.综合运用这些知识是解决本题的关键.

6. (2014•攀枝花,第16题4分)如图,在梯形ABCD中,AD∥BC,BE平分∠ABC交CD于E,且BE⊥CD,CE:ED=2:1.如果△BEC的面积为2,那么四边形ABED的面积是   .

考点: 相似三角形的判定与性质;等腰三角形的判定与性质;梯形.

分析: 首先延长BA,CD交于点F,易证得△BEF≌△BEC,则可得DF:FC=1:4,又由△ADF∽△BCF,根据相似三角形的面积比等于相似比的平方,可求得△ADF的面积,继而求得答案.

解答: 解:延长BA,CD交于点F,

∵BE平分∠ABC,

∴∠EBF=∠EBC,

∵BE⊥CD,

∴∠BEF=∠BEC=90°,

在△BEF和△BEC中,

∴△BEF≌△BEC(ASA),

∴EC=EF,S△BEF=S△BEC=2,

∴S△BCF=S△BEF+S△BEC=4,

∵CE:ED=2:1

∴DF:FC=1:4,

∵AD∥BC,

∴△ADF∽△BCF,

∴ =( )2= ,

∴S△ADF= ×4= ,

∴S四边形ABCD=S△BEF﹣S△ADF=2﹣ = .

故答案为: .

点评: 此题考查了相似三角形的判定与性质、全等三角形的判定与性质以及梯形的性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.

7.(2014•湖北黄石,第14题3分)如图,在等腰梯形ABCD中,AB∥CD,∠D=45°,AB=1,CD=3,BE∥AD交CD于E,则△BCE的周长为   .

第1题图

考点: 等腰梯形的性质.

分析: 首先根据等腰梯形的性质可得∠D=∠C=45°,进而得到∠EBC=90°,然后证明四边形ABED是平行四边形,可得AB=DE=1,再得EC=2,然后再根据勾股定理可得BE长,进而得到△BCE的周长.

解答: 解:∵梯形ABCD是等腰梯形,

∴∠D=∠C=45°,

∵EB∥AD,

∴∠BEC=45°,

∴∠EBC=90°,

∵AB∥CD,BE∥AD,

∴四边形ABED是平行四边形,

∴AB=DE=1,

∵CD=3,

∴EC=3﹣1=2,

∵EB2+CB2=EC2,

∴EB=BC= ,

∴△BCE的周长为:2+2 ,

故答案为:2+2 .

点评: 此题主要考查了等腰梯形的性质,以及平行四边形的判定和性质,勾股定理的应用,关键是掌握等腰梯形同一底上的两个角相等.

三.解答题

1. (2014年江苏南京,第19题)如图,在△ABC中,D、E分别是AB、AC的中点,过点E作EF∥AB,交BC于点F.

(1)求证:四边形DBFE是平行四边形;

(2)当△ABC满足什么条件时,四边形DBEF是菱形?为什么?

(第1题图)

考点:三角形的中位线、菱形的判定

分析:(1)根据三角形的中位线平行于第三边并且等于第三边的一半可得DE∥BC,然后根据两组对边分别平行的四边形是平行四边形证明;

(2)根据邻边相等的平行四边形是菱形证明.

(1)证明:∵D、E分别是AB、AC的中点,

∴DE是△ABC的中位线,∴DE∥BC,又∵EF∥AB,∴四边形DBFE是平行四边形;

(2)解答:当AB=BC时,四边形DBEF是菱形.

理由如下:∵D是AB的中点,∴BD= AB,∵DE是△ABC的中位线,

∴DE= BC,∵AB=BC,∴BD=DE,又∵四边形DBFE是平行四边形,∴四边形DBFE是菱形.

点评:本题考查了三角形的中位线平行于第三边并且等于第三边的一半,平行四边形的判定,菱形的判定以及菱形与平行四边形的关系,熟记性质与判定方法是解题的关键.

2. (2014•乐山,第21题10分)如图,在梯形ABCD中,AD∥BC,∠ADC=90°,∠B=30°,CE⊥AB,垂足为点E.若AD=1,AB=2 ,求CE的长.

考点: 直角梯形;矩形的判定与性质;解直角三角形..

分析: 利用锐角三角函数关系得出BH的长,进而得出BC的长,即可得出CE的长.

解答: 解:过点A作AH⊥BC于H,则AD=HC=1,

在△ABH中,∠B=30°,AB=2 ,

∴cos30°= ,

即BH=ABcos30°=2 × =3,

∴BC=BH+BC=4,

∵CE⊥AB,

∴CE= BC=2.

点评: 此题主要考查了锐角三角函数关系应用以及直角三角形中30°所对的边等于斜边的一半等知识,得出BH的长是解题关键.

3. (2014•攀枝花,第19题6分)如图,在梯形OABC中,OC∥AB,OA=CB,点O为坐标原点,且A(2,﹣3),C(0,2).

(1)求过点B的双曲线的解析式;

(2)若将等腰梯形OABC向右平移5个单位,问平移后的点C是否落在(1)中的双曲线上?并简述理由.

考点: 等腰梯形的性质;反比例函数图象上点的坐标特征;待定系数法求反比例函数解析式;坐标与图形变化-平移.

分析: (1)过点C作CD⊥AB于D,根据等腰梯形的性质和点A的坐标求出CD、BD,然后求出点B的坐标,设双曲线的解析式为y= (k≠0),然后利用待定系数法求反比例函数解析式解答;

(2)根据向右平移横坐标加求出平移后的点C的坐标,再根据反比例函数图象上点的坐标特征判断.

解答: 解:(1)如图,过点C作CD⊥AB于D,

∵梯形OABC中,OC∥AB,OA=CB,A(2,﹣3),

∴CD=2,BD=3,

∵C(0,2),

∴点B的坐标为(2,5),

设双曲线的解析式为y= (k≠0),

则 =5,

解得k=10,

∴双曲线的解析式为y= ;

(2)平移后的点C落在(1)中的双曲线上.x k b 1 . c o m

理由如下:点C(0,2)向右平移5个单位后的坐标为(5,2),

当x=5时,y= =2,

∴平移后的点C落在(1)中的双曲线上.

点评: 本题考查了等腰梯形的性质,待定系数法求反比例函数解析式,反比例函数图象上点的坐标特征,坐标与图形变化﹣平移,熟练掌握等腰梯形的性质并求出点B的坐标是解题的关键.

免责声明

精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。